
Variable-Player Learning for Simulation-Based Games
Madelyn Gatchel

May 2021

A thesis submitted to the faculty of Davidson College
in partial ful�llment of the requirements for
Departmental Honors in Computer Science.

Committee:

Bryce Wiedenbeck, Advisor
Raghu Ramanujan, Second Reader

Tim Chartier

Tabitha Peck

Carl Yerger

1



Acknowledgements
First I thank the Department of Mathematics & Computer Science for challenging and supporting

me over the past four years as a mathematician, computer scientist, and person. You all have

helped me �nd my passion for research and teaching, and I would not be going to graduate

school, let alone graduate school in computer science, if not for your mentorship and support.

I also thank my major advisors, Dr. Smith and Dr. Mendes, for helping me manage the com-

plicated course logistics between the math and computer science double major and honors, and

for helping me navigate the challenges associated with a rigorous schedule. Dr. Smith, you have

set an example for how to communicate complicated ideas in a way that is easy to understand,

and I strive to explain concepts half as well as you do. Dr. Mendes, you have always conveyed

your overwhelming con�dence in me as a computer scientist, especially when I needed to hear

it the most.

Dr. R, thank you for being there for all of the biggest moments from the start: convincing me

to take CSC 121, encouraging me to do the DREU program and to apply for the AAAI-UC, and

lastly for being the second reader for this thesis.

Dr. Kuchera, thank you for sharing your passion for and excitement about computer science

and machine learning. I hope to embody that same level of enthusiasm with my future students.

Bryce: I think I could write a list longer than my longest list of questions with reasons I am

thankful for you. In short, thank you for introducing me to algorithmic game theory, a �eld

that combines elements from both my majors with a focus on solving real-world problems. I am

excited to continue to explore this �eld in graduate school and beyond.

2



Contents
1 Introduction 7

1.1 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 11
2.1 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Normal-Form Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Symmetric Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Simulation-Based Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.4 Action-Graph Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.5 Approximate Nash Equilibrium Computation . . . . . . . . . . . . . . . . 26

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Introduction to Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2 Neural Network Parameter Optimization . . . . . . . . . . . . . . . . . . . 30

2.2.3 Neural Network Hyperparameter Optimization . . . . . . . . . . . . . . . 33

3 Related Work 36
3.1 Learning Game Models from Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Games with a Variable Number of Players . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Simulation-Based Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Other Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Variable-Player Game Model and Analysis 39
4.1 Variable-Player Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Approximating Deviation Payo�s . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Approximating Robust Nash Equilibria . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Equilibrium Robustness Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Experiments 46
5.1 Random Game Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Comparison to Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Experimental Speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Variable-Player Replicator Dynamics Evaluation . . . . . . . . . . . . . . . . . . . 49

5.3.1 Experimental Speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Conclusion 52

3



List of Figures
1 Both simultaneous-move games and sequential-move games are types of non-

cooperative games, and normal-form games are a type of simultaneous-move

game. In this thesis, we focus on simultaneous-move games, particularly normal-

form games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Machine learning falls at the intersection of arti�cial intelligence and data science. 9

3 (a) Rock-Paper-Scissors expressed as a normal-form game and (b) accompanying

�gure to three RPS examples describing how to interpret a payo� matrix. . . . . . 13

4 Line segment between (1,0) and (0, 1) describing the set of all mixed strategies

containing two actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Triangle describing the set of all mixed strategies containing three actions (a) in

3D and (b) projected into 2D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Will and Madelyn’s “Battle of the Siblings" represented as a normal-form game. . 15

7 Using best responses to �nd pure-strategy Nash equilibria in the Battle of the

Siblings game. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8 (a) Solving for the probability ? with which Madelyn plays action B such that

Will is indi�erent between the two movies and (b) Solving for the probability @

with which Will plays action B such that Madelyn is indi�erent between the two

movies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9 High-level description of simulation-based game-theoretic model construction:

we de�ne agents and their strategies, simulate each possible pro�le, and record

payo� estimates in a payo� matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10 A graphical representation of the eastern section of downtown New Bern, NC

showing the four possible MumFest booth locations. . . . . . . . . . . . . . . . . . 23

11 (a) Mumfest vendor game represented as an action-graph game and (b) Strategy

sets for each role highlighted in Mumfest AGG. . . . . . . . . . . . . . . . . . . . 24

12 RPS represented as a bipartite AGG with additive function nodes. . . . . . . . . . 25

13 A graphical representation of a simple arbitrary arti�cial neuron. . . . . . . . . . 28

14 A simple neural network architecture with three input neurons, a hidden layer

with six sigmoid neurons, a hidden layer with four ReLU neurons and an output

layer with two neurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

15 A simple example of a neural network represented by a computational graph. . . 31

16 Comparison of regression models where model (a) over�ts to the data and model

(b) generalizes well to new data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

17 A typical plot showing loss vs epoch number. . . . . . . . . . . . . . . . . . . . . 34

18 A visual representation for the multi-headed neural network architecture used

for our variable-player learning model. . . . . . . . . . . . . . . . . . . . . . . . . 42

19 Simplex showing points in the neighborhood of a given mixture (pink star) for

three di�erent values of l<G for a 3-strategy game. . . . . . . . . . . . . . . . . . 42

20 Comparison of four robustness metrics on a randomly generated game: (a) av-

erage regret metric, (b) median regret metric, (c) max regret metric, and (d) Y-

equilibrium frequency metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4



21 (a) Experiment 1 with 60,000 training examples shows that FPL performs better

when both methods receive identical training data. (b) Experiment 1 with 90,000

shows that FPL performs better when both methods receive identical training

data, and shows diminishing returns to additional data. . . . . . . . . . . . . . . . 48

22 (a) Experiment 2 with 60,000 training examples shows the potential for VPL to

signi�cantly out-perform FPL, when VPL training data player counts are ran-

domly selected from < ≤ ? ≤ =. (b) Experiment 2 with 90,000 training exam-

ples shows greater consistency in FPL with additional data, but VPL with random

player counts still performing better. . . . . . . . . . . . . . . . . . . . . . . . . . 49

23 The variable-player learning model with training data spread out through ini-

tial training and retraining and with intermediate regret checks outperforms the

model with all data up front and no retraining and the model with data spread

out through initial training but without intermediate regret checks. . . . . . . . . 51

24 The model with 20,000 initial training data points, resampling/retraining, and

intermediate regret check shows improvement in regret MAE after each resam-

ple/retrain iteration, particularly on instances with higher player counts. . . . . . 52

List of Algorithms
1 Computing approximate Nash equilibria using replicator dynamics. . . . . . . . . 27

2 Computing approximate Nash equilibria variable-player games using our learned

deviation payo� model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

List of Tables
1 De�nitions for common neural network activation functions. . . . . . . . . . . . . 29

2 Summary of variable-player replicator dynamics model variations evaluated. . . . 49

5



Abstract
Game theory is the branch of economics that aims to model how people or "agents" interact and

make decisions. A normal-form game uses a payo� matrix to describe each agent’s degree of

happiness with each outcome. We study simulation-based games, a type of game where this

payo� matrix is not known in advance but can be �lled in through a series of multi-agent sim-

ulations. Traditionally, a normal-form payo� matrix is de�ned for a �xed number of players. In

many real-world settings, the exact number of players is unknown, but we might know a range

in which the number of players falls. In this thesis, we de�ne variable-player games, present a

machine learning technique to analyze variable-player simulation-based games, and discuss how

this technique will enable more meaningful predictions about behavior in the real-world game.
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1 Introduction
In this thesis we apply machine learning techniques to solve a problem in game theory which

would otherwise be intractable. Many of the real-world interactions game theorists might want

to model have a large, uncertain number of participants. However, current game-theoretic mod-

els assume a �xed number of players. We propose a new type of game-theoretic model which

accommodates this uncertainty in the number of players. The approach uses machine learning

to construct a variable-player game-theoretic model based on data from multi-agent simulations.

We also extend current analysis techniques to analyze variable-player game models. In sections

1.1 and 1.2 we will introduce the sub�elds of game theory and machine learning, both of which

are necessary to understand the relevance and novelty of this work. We will provide a more

thorough background for each sub�eld in section 2. Then in section 1.3 we will expand on the

real-world motivation for this thesis and highlight our main contributions.

1.1 Game Theory
Game theory is the branch of economics that aims to model self-interested participants or agents
interacting and making decisions. In this de�nition, self-interested does not mean that the agents

are sel�sh, but rather that each agent has certain outcomes that she prefers to others and will act

strategically to try to bring about those outcomes. A game is a mathematical model of incentives

for a particular interaction. A central objective in game theory is to construct and analyze a

game-theoretic model in order to make predictions about future behavior in the interaction.

As interest in the �eld began to grow during the �rst half of the twentieth century with works

from John von Neumann, Oskar Morgenstern, and John Nash [51, 35, 33, 34], researchers began to

apply game theory to solve problems in political science [3, 10] and evolutionary biology [44, 48].

While game theory has always had strong ties to mathematics, it was not until more recently that

the �eld of algorithmic game theory emerged [26, 36, 40]. Algorithmic game theory (sometimes

called computational game theory) lies at the intersection of theoretical computer science, arti�cial

intelligence, and economics. Within this sub�eld there are three main goals: to design algorithms

or models to make game theory problems more tractable, to develop analyses that allow us to

make claims about these algorithms or models with some certainty, usually via proof, and to

understand incentives in computational systems.

Foundational to game theory is preference theory, which is based on the idea that every agent

has preferences over the outcomes of a particular decision. An agent’s preferences between ar-

bitrary outcomes � and � can be described in one of three ways:

• The agent prefers � to �, meaning that the agent likes � at least as much as the agent likes

�. This is denoted as � � �.

• The agent strictly prefers � to �, meaning that the agent likes � more than the agent likes

�. This is denoted as � � �.

• The agent is indi�erent between � and �, meaning that the agent likes outcomes � and �

equally. This is denoted as � ∼ �.

Using an agent’s preferences, we can construct a utility function, which tries to quantify an agent’s

degree of happiness with a particular outcome relative to alternative outcomes. This utility func-
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tion becomes more complex when the interaction depends on others’ preferences and actions. In

the 1940s, John von Neumann and Oskar Morgenstern proved the following theorem [35]:

Theorem 1. An agent will act to maximize their expected utility when faced with uncertainty about
opponents’ actions if and only if certain preference axioms are satis�ed.

For the purposes of this thesis, we assume that these preference axioms are always satis�ed, and

therefore all agents are expected utility maximizers. We will discuss expected utilities further in

section 2.1.1.

Two of the most commonly studied types of games in game theory are non-cooperative games

and cooperative games. For non-cooperative games, we care about how each individual agent acts

and which decision they make, particularly when they face uncertainty over opponents’ actions.

For cooperative games, we care about how individual agents interact in groups or coalitions with

respect to coalition formation and payo� division [29]. Note that the distinction is not based

on whether the agents want to cooperate with one another. A simultaneous-move game is a

type of non-cooperative game in which the agents play actions simultaneously as opposed to

sequentially. Rock-Paper-Scissors is an example of a simultaneous-move game, whereas chess is

an example of a sequential-move game.

A normal-form game is a type of simultaneous-move game. A normal-form game includes a

set of players and, for each player, a set of available strategies as well as a utility function that de-

scribes their degree of happiness for each possible outcome. Figure 1 describes the relationships

between these �ve types of games. In this thesis, we focus on normal-form games. In partic-

ular, we de�ne a variable-player game by loosening the normal-form �xed-player requirement

to account for uncertainties in the number of players. We use machine learning techniques to

construct a variable-player game-theoretic model from simulation data.

Game Theory

Non-Cooperative

Games

Cooperative

Games

Simultaneous-

Move Games

Sequential-

Move Games

Figure 1: Both simultaneous-move games and sequential-move games are types of non-

cooperative games, and normal-form games are a type of simultaneous-move game. In this thesis,

we focus on simultaneous-move games, particularly normal-form games.

1.2 Machine Learning
Machine learning is the sub�eld of computer science that uses mathematical techniques to learn

functions from data, frequently through an iterative re�nement process. It is a subset of ar-
ti�cial intelligence, the branch of computer science that leverages computational techniques to
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imitate actions or decision-making processes that usually involve human intelligence. Many re-

cent machine learning applications have also involved elements of data science, a �eld devoted

to extracting meaning from data. Finally, deep learning is a subset of machine learning that gen-

erally refers to neural networks. Figure 2 shows the relationships between arti�cial intelligence,

machine learning, deep learning and data science. In practice, the boundaries between the four

areas are not so rigid. For example, theoretical machine learning, an area devoted to proving run

time and correctness guarantees for machine learning algorithms, would be classi�ed as machine

learning but not data science. Thus this �gure primarily gives a high-level overview of the rela-

tionships between the four areas.

Arti�cial
Intelligence

Data
Science

Deep
Learning

Machine
Learning

Figure 2: Machine learning falls at the intersection of arti�cial intelligence and data science.

The three main categories of machine learning include unsupervised learning, supervised

learning, and semi-supervised learning. The type of learning used is frequently determined by

the data available for a given problem. Data can either be labeled, meaning that each data point

has both inputs and outputs, or it can be unlabeled, meaning that each data point contains only

input values and no outputs are known. Supervised learning involves learning a mapping from

inputs to outputs based on labeled data. This mapping is then used to predict outputs for new,

unlabeled input data. Traditionally, most deep learning models are supervised learning models.

Unsupervised learning involves learning a function from unlabeled data. This function seeks to

identify patterns or relationships among the input data points. Unsupervised learning techniques

include clustering and principal component analysis. Semi-supervised learning involves a combi-

nation of supervised and unsupervised learning. The most common example of semi-supervised

learning is reinforcement learning. Note that inputs or input variables are sometimes referred to as

independent variables or features; similarly, outputs or output variables are sometimes referred

to as dependent variables, outcomes, or targets.

In this thesis, the function we are trying to learn has continuous outputs, which makes it a

regression task. In particular, we use deep learning to infer the deviation payo� function from

simulator data for a variable-player game.
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1.3 Motivation
While the �eld has strong foundations in theoretical computer science, algorithmic game theory

is driven by many real-world applications. Traditionally, game theorists have studied auctions,

elections, and fair division of goods. In addition, algorithmic game theory has been applied to

settings such as kidney exchange [1, 2, 8, 9], wildlife poaching prevention [64, 24, 11], physical

security and cybersecurity [60, 32, 41, 47, 39], �nance [54, 6, 53], and games like poker and Go

[5, 43, 42].

Our techniques are particularly relevant for analyzing simulation-based games, where a normal-

form payo� matrix is not known in advance but can be �lled in through a series of multi-agent

simulations. Simulation-based games are often used to model real-world interactions. In many

of these settings, the exact number of players is both large and unknown. For example, suppose

we want to model traders interacting in the stock market. We can reasonably assume that the

number of traders in the interaction will be large and we might be able to predict a range in which

the exact number of traders falls, but we likely will not ever know exactly how many traders are

actively participating. As the number of players grows in a game, so does the size of the payo�

matrix. This presents challenges when trying to compute equilibria, which represent predictions

about behavior in the real-world interaction. More speci�cally, most equilibrium-�nding algo-

rithms require summing over the entire payo� matrix several times which can be computationally

expensive when the payo� matrix is large. We address this problem using machine learning to

generalize from partial data from the game.

Since the interaction we are studying might have an uncertain number of participants, a

normal-form game with a �xed number of players might be an insu�cient model. Thus, we fo-

cus on analyzing games with a variable number of players, where the number of players falls in

a speci�ed range. We hypothesize that the payo�s in a game with G players are similar or related

to the payo�s in the same game with G ± 1 players, given a large value of G . In the context of the

stock market example: given the large number of traders present, adding one more trader likely

will not change the overall incentives, and therefore payo�s, of the game. With this hypothesis,

we generalize Sokota, Ho, and Wiedenbeck’s results [45] to analyze games with a large, variable

number of players. The new goal is to develop analyses that accommodate this uncertainty in the

number of players, such as �nding equilibria that are robust within the range of possible player

counts. In this thesis, we de�ne variable-player games, present a machine learning technique

to analyze variable-player simulation-based games, and discuss how this technique will enable

more meaningful predictions about behavior in the real-world game.

The remaining sections are organized as follows: section 2 will provide a more rigorous back-

ground in game theory and machine learning; section 3 will highlight several examples of learn-

ing game models from data in the literature and examine prior work that analyzes games with

a variable number of players; section 4 will present our learned variable-player game-theoretic

model as well as provide a technique to analyze variable-player games; section 5 will discuss our

experimental results, comparing our model to existing work and showing the validation of our

algorithm for analysis of variable-player games; �nally, section 6 will summarize this thesis and

detail avenues for future exploration.
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2 Background
To fully understand and appreciate the novelty of the contributions of this thesis, it is essential

to have a �rm and thorough foundation in both game theory and machine learning. In this

section, we will expand on the game theory and machine learning introductions from sections

1.1 and 1.2 by providing formal de�nitions of relevant terms and concepts, giving examples of

more challenging concepts, and explaining how each concept relates to our work in modeling

and analyzing variable-player games.

2.1 Game Theory
In this section we will discuss several classes of simultaneous-move games. In section 2.1.1 we will

formally de�ne a normal-form game as well as several other concepts which are essential when

constructing and analyzing game-theoretic models. In section 2.1.2 we will describe symmetric

games in which all players have the same strategy sets and utility functions, allowing us to use a

more simpli�ed notation to represent the game. In section 2.1.3 we will provide a more thorough

motivation for and description of simulation-based games. Next, in section 2.1.4 we will de�ne an

action-graph game, a compact game representation of a normal-form game which is most useful

when games exhibit player symmetries, and will preview how we use action-graph games in our

experiments. Finally, in section 2.1.5 we will present several algorithms from the literature that

are used to �nd approximate Nash equilibria.

2.1.1 Normal-Form Games

A normal-form game is a tuple Γ= = (%, (,D), where % = {1, . . . , =} is a set of indexed players,

( = (1 × · · · × (= is the Cartesian product of each player 8’s strategy set (8 , and D : ( ↦→ R=
is a utility function that maps outcomes, or combinations of strategies each player can play, to

real-valued utilities or payo�s. Equivalently, D = (D1, . . . , D=), where D8 : ( ↦→ R.

The well-known game Rock-Paper-Scissors (RPS) can be represented as a normal-form game.

There are two players, so

% = {1, 2}.
Each player has three possible actions or strategies: Rock (R), Paper (P), and Scissors (S). Thus

(1 = {R, P, S}
(2 = {R, P, S}

( = (1 × (2 = {(R,R), (R, P), (R, S),
(P,R), (P, P), (P, S),
(S,R), (S, P), (S, S)}.

We know that paper beats rock, scissors beats paper, rock beats scissors, and any outcome where

both players play the same action results in a tie. For a given outcome, we can assign a utility of

1 to the winning player, -1 to the losing player and 0 to both players in the event of a tie. We can
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awkwardly specify D as follows:

D1 = {((R,R), 0), ((R, P),−1), ((R, S), 1),
((P,R), 1), ((P, P), 0), ((P, S),−1),
((S,R),−1), ((S, P), 1), ((S, S), 0)}

D2 = {((R,R), 0), ((R, P), 1), ((R, S),−1),
((P,R),−1), ((P, P), 0), ((P, S), 1),
((S,R), 1), ((S, P),−1), ((S, S), 0)}

D = (D1, D2).

Note that while the winning, losing and tying payo�s are not dependent on player identity (i.e.,

the winning payo� is always 1 regardless of whether Player 1 or Player 2 wins, etc.), we still

specify a utility function for each player. In section 2.1.2 we will discuss how this game can be

rewritten as a symmetric game, where we care about the number of players playing each strategy

as opposed to the identities or indices of the players playing each strategy.

While utility functions can be described formally as a set of (outcome, payo�) ordered pairs,

this notation can be di�cult to quickly interpret, as demonstrated by the Rock-Paper-Scissors

example. Observe that in the Rock-Paper-Scissors utility function de�nitions, in the �rst row of

outcomes Player 1 is always playing R and in the �rst column of outcomes Player 2 is always

playing R. Overall, in a given row Player 1 is playing the same action across all columns and

in a given column Player 2 is playing the same action across all rows. Using this organization

we can translate the payo� function representation into a payo� matrix. In this payo� matrix,

each of Player 1’s actions is displayed on a new row and each of Player 2’s actions is displayed

on a new column. Further, each cell of the table corresponds to an outcome where Player 1 is

playing the corresponding row strategy, Player 2 is playing the corresponding column strategy,

and both players’ payo�s for that outcome are stored within the cell. Note that Player 1’s payo�

is equal to the left value in the cell and Player 2’s payo� is equal to the right value. Because payo�

matrices are much easier to quickly understand, normal-form games are usually expressed using

an =-dimensional payo� matrix, where = represents the number of players in the game.

For a game Γ= , consider a player 8 with strategy set (8 . A pure strategy is any B ∈ (8 . In other

words, (8 is the set of pure strategies available to player 8 . A pure-strategy pro�le ®B = (B1, . . . , B=)
is a vector that speci�es which strategy each player has selected. The union of all pure-strategy

pro�les is equal to ( . The outcomes in a game are all the possible combinations of actions the

players can simultaneously play. While outcomes and pure-strategy pro�les are e�ectively the

same, we frequently use pure-strategy pro�le to describe what each player is playing whereas we

use outcome to refer to a cell of a payo� matrix.

Figure 3a shows Rock-Paper-Scissors expressed using a normal-form payo� matrix. Suppose

Player 1 plays rock (R) and Player 2 plays paper (P); equivalently, suppose ®B = (R, P). The blue cell

in Figure 3b highlights the payo�s associated with pure-strategy pro�le (R, P)—Player 1 receives

a payo� of -1 and Player 2 receives a payo� of 1. This is consistent with the game rule that

paper beats rock. The green cell in Figure 3b highlights the payo�s associated with pure-strategy

pro�le (P, R). This might seem identical to the pure-strategy pro�le from before, but in fact this

pro�le tells us that Player 1 is playing paper and Player 2 is playing scissors. The corresponding
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Player 2

Pl
ay

er
1

R P S
R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

Player 2

Pl
ay

er
1

R P S
R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

(a) (b)

Figure 3: (a) Rock-Paper-Scissors expressed as a normal-form game and (b) accompanying �gure

to three RPS examples describing how to interpret a payo� matrix.

outcome cell highlights that Player 1 receives a payo� of 1 and Player 2 receives a payo� of -1,

which makes sense, again, because paper beats rock. Finally, consider the pure-strategy pro�le

(S, S). The corresponding outcome cell is highlighted in purple, and tells us that both players

receive 0 payo�, which makes sense because the outcome represents a tie.

Given uncertainty over opponents’ actions, sometimes players might want to randomize over

their possible actions. While this might not always make sense in a real-world context, it enables

more avenues for analysis for the overall game from which meaning may still be extracted. A

mixed strategy f for player 8 is a probability distribution over the actions in (8 . Thus

∑:
9=1
(f 9 ) =

1. Note that a pure strategy B is also a mixed strategy with probability 1 for strategy B and 0 for

the remaining strategies in (8 . A mixed-strategy pro�le ®f = (f1, . . . , f=) speci�es which (pure- or

mixed-) strategy each player is playing.

Figure 4: Line segment between (1,0) and (0, 1) describing the set of all mixed strategies containing

two actions.

A mixed strategy f with : actions is an element of R: . Further, the set of all mixed strategies

containing : actions can be described by the (: − 1)-simplex. When : = 2, the set of all mixed

strategies is described by a line segment from (0, 1) to (1, 0), as shown in Figure 4. The two black

13



(a) (b)

Figure 5: Triangle describing the set of all mixed strategies containing three actions (a) in 3D and

(b) projected into 2D.

points correspond to pure strategies, where the point at (1, 0) corresponds to pure strategy B1
and the point at (0, 1) corresponds to pure-strategy B2. The orange point corresponds to mixed

strategy f = (0.8, 0.2), where the player plays B1 with probability 0.8 and B2 with probability 0.2.

When : = 3, as is the case in RPS, the set of mixed strategies is described by a triangle. Figure

5a shows the triangle in R3
, and Figure 5b shows the triangle projected onto R2

. Note that in

Figure 5b, B1 corresponds to pure-strategy pro�le ®B = (1, 0, 0), B2 corresponds to ®B = (0, 1, 0), and

B3 corresponds to ®B = (0, 0, 1). Additionally, the black points correspond to mixed strategies as

labeled, and the blue point in the center corresponds to mixed strategy f = (1/3, 1/3, 1/3). A

mixed-strategy pro�le ®f is an element of R< , where < =
∑
8∈% |(8 |; equivalently, < is equal to

the sum of the number of actions available to each player. Finally, the set of all mixed-strategy

pro�les can be described by a simplotope, which is the Cartesian product of the simplices for each

player. These simplices and simplotopes will be used for visualizations in later sections.

Given that each player is playing a mixed strategy, how much payo� should player 8 expect

to receive? This expected value of a player’s utility function based on a mixed-strategy pro�le is

called a player’s expected utility. Recall that the components of the mixed-strategy pro�le describe

the probability with which each player plays each strategy available to them. To calculate a

player’s expected utility, we can compute the probability of each outcome occurring according to

®f and then compute the weighted average payo� based on the outcome probabilities. Formally,

given a mixed-strategy pro�le ®f , player 8’s expected utility is de�ned as

D8 ( ®f) =
∑
B∈(

D8 (B)
=∏
9=1

®f 9 (B 9 ). (1)
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Consider the RPS game again and suppose ®f = (( 2
3
, 1

3
, 0), (0, 1

2
, 1

2
)) . Then

D1( ®f) =
2

3

· 0 · 0 + 2

3

· 1

2

· −1 + 2

3

· 1

2

· 1 +
1

3

· 0 · 1 + 1

3

· 1

2

· 0 + 1

3

· 1

2

· −1 +

0 · 0 · −1 + 0 · 1

2

· 1 + 0 · 1

2

· 0

= − 1

6

D2( ®f) =
2

3

· 0 · 0 + 2

3

· 1

2

· 1 + 2

3

· 1

2

· −1 +
1

3

· 0 · −1 + 1

3

· 1

2

· 0 + 1

3

· 1

2

· 1 +

0 · 0 · 1 + 0 · 1

2

· −1 + 0 · 1

2

· 0

=
1

6

.

Therefore, when the players play according to mixed-strategy pro�le ®f = (( 2
3
, 1

3
, 0), (0, 1

2
, 1

2
)),

Player 1 can expect to receive a payo� of −1

6
and Player 2 can expect to receive a payo� of

1

6
.

To motivate typical game-theoretic analysis, consider the following real-world game. Made-

lyn and Will are young siblings on a long car ride and they must decide which movie to watch

on a portable television.
1

Will’s favorite movie is Thomas & Friends (T), and Madelyn’s favorite

movie is Barbie Swan Lake (B). Each sibling must tell their father which movie they would like to

watch. If the siblings pick di�erent movies, their father makes them watch Spirit, a movie they

strongly dislike. For these outcomes, both siblings receive a payo� of 0. If the siblings pick the

same movie, the sibling for whom the movie is their favorite receives a payo� of 2 and the other

sibling receives a payo� of 1 because they still prefer the movie to Spirit. Figure 6 shows this

game expressed using a normal-form payo� matrix, where Madelyn is the row player and Will is

the column player. Note that this is equivalent to a common game in introductory game theory

courses with the name “Battle of the Sexes," but we prefer this “Battle of the Siblings" version for

several obvious reasons.

Will

M
ad

el
yn

B T
B 2, 1 0, 0

T 0, 0 1, 2

Figure 6: Will and Madelyn’s “Battle of the Siblings" represented as a normal-form game.

In the “Battle of the Siblings" example, a primary objective is to make a prediction about

Madelyn and Will’s behavior based on the game-theoretic model. We can identify outcomes of

interest in the game-theoretic model using various solution concepts, which are criteria which can

1
A signi�cant treat, as long car-ride movies did not require TV tickets.
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be applied to distinguish relevant outcomes from irrelevant outcomes. We �rst present a naive

initial solution concept to demonstrate the di�culty of �nding relevant outcomes. Recall that

players are expected utility maximizers. A naive initial approach might be to select the mixed-

strategy pro�le ®f that maximizes the expected utility for the greatest number of agents as the

most likely outcome. Let Player ? be one of the players for whom the mixed-strategy pro�le

does not maximize their expected utility. Given that everyone else plays according to ®f , Player ?

can instead play the mixed strategy f′8 that maximizes their expected utility. Thus this solution

concept is not particularly helpful because not all players have an incentive to play according to

the identi�ed mixed-strategy pro�le ®f.
This example highlights the notion of a best-response strategy. De�ne ®f−8 to be the (= − 1)-

tuple describing the mixed strategies of all players excluding 8:

®f−8 = (f1, . . . , f8−1, f8+1, . . . , f=)

Then ®f = (f8, ®f−8). Player 8’s best response to ®f−8 is a pure-strategy B′8 such that D8 (B′8 , ®f−8) ≥
D8 (B8, ®f−8) for all B8 ∈ ( . Note that by linearity of expectation, any mixed-strategy with non-zero

probabilities only assigned to strategies that are best responses is also a best response to f−8 .
Equivalently, a best response for Player 8 is any strategy that maximizes their expected utility,

holding opponents’ actions constant. In the example from earlier, Player ?’s best response was to

play a mixed-strategy other than f8 ∈ ®f, which is why the solution concept was not an e�ective

one.

One of the most important solution concepts in game theory is Nash equilibrium. A Nash
equilibrium is a pure- or mixed-strategy pro�le such that every player is best responding. Other

common solution concepts in game theory include n−Nash equilibrium, correlated equilibrium,

coarse-correlated equilibrium, and pareto optimality. This thesis will exclusively focus on com-

puting Nash equilibria and n-Nash equilibria.

To �nd pure-strategy Nash equilibria in the “Battle of the Siblings" game, we want to deter-

mine the best-response strategy for each player and opponent strategy. If there exists a pair of

strategies, one for Will and one for Madelyn, such that each strategy is a best response to the

opponent playing the other strategy, then that pure-strategy pro�le is a Nash equilibrium. In

Figure 7a, we �x Will’s strategy as B as demonstrated by the gray background. The green high-

lighted values show the possible payo�s Madelyn could receive—if Madelyn plays B, she receives

a payo� of 2 and if she plays T, she receives a payo� of 0. Since 2 > 0, Madelyn’s best response

strategy to Will playing B is also to play B. As demonstrated by Figure 7b, when we �x Will’s

strategy as T (shown in gray), Madelyn’s best response strategy is also T because 1 > 0 (shown in

green). In Figure 7c, we �x Madelyn’s strategy as B as demonstrated by the gray cell background.

Will’s best response strategy to Madelyn playing B is also to play B because 1 > 0. As shown by

Figure 7d, when we �x Madelyn’s strategy as T, Will’s best response strategy is also T because

2 > 0. Thus pure-strategy pro�le ®B = (B,B) is a Nash equilibrium because both Madelyn and

Will are best responding to their beliefs about the other’s actions. Similarly, pure-strategy pro�le

®B = (T,T) is a Nash equilibrium because both are best responding.

We can solve for a mixed-strategy Nash equilibrium algebraically in the “Battle of the Siblings"

game through a system of equations where each player randomizes to make their sibling indi�er-

ent between their two strategies. Let ? denote the probability with which Madelyn chooses B and

@ denote the probability with which Will chooses B. In order to make Will indi�erent between
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B T
B 2, 1 0, 0

T 0, 0 1, 2

B T
B 2, 1 0, 0

T 0, 0 1, 2

(a) (b)

B T
B 2, 1 0, 0

T 0, 0 1, 2

B T
B 2, 1 0, 0

T 0, 0 1, 2

(c) (d)

Figure 7: Using best responses to �nd pure-strategy Nash equilibria in the Battle of the Siblings

game.

the two movies, Madelyn wants to randomize such that

D, ((B, (?, 1 − ?))) = D, ((T, (?, 1 − ?)))
1 · ? + 0 · (1 − ?) = 0 · ? + 2 · (1 − ?)

? = 2 − 2?

? =
2

3

.

Therefore, Madelyn should play mixed-strategy f = (?, 1 − ?) = ( 2
3
, 1

3
) in order to make Will in-

di�erent between the two movies. In order to make Madelyn indi�erent between the two movies,

Will wants to randomize such that

D" ((B, (@, 1 − @))) = D" ((T, (@, 1 − @)))
2 · @ + 0 · (1 − @) = 0 · @ + 1 · (1 − @)

2 · @ = 1 − @

@ =
1

3

.

Therefore, Will should play mixed-strategy f = (@, 1−@) = ( 1
3
, 2

3
) in order to make Madelyn indif-

ferent between the two movies. Since for both players we solved for mixed-strategies that make

their sibling indi�erent, they are both best responding to each other. Thus ®f =

(
( 2

3
, 1

3
), ( 1

3
, 2

3
)
)

is

a Nash equilibrium. Figure 8 shows solving for mixed-strategy equilibrium probabilities graph-

ically. In general it is much more challenging to compute mixed-strategy Nash equilibria in a

game. We will discuss Nash-�nding algorithms in section 2.1.5.

Why is the Nash equilibrium such an in�uential solution concept in game theory? Nash’s

Theorem [34], one of the most important theorems in game theory, characterizes a guarantee for

this solution concept for all non-cooperative games:

Theorem 2. Every �nite game with two or more players contains at least one Nash equilibrium.
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(a) (b)

Figure 8: (a) Solving for the probability ? with which Madelyn plays action B such that Will is

indi�erent between the two movies and (b) Solving for the probability @ with which Will plays

action B such that Madelyn is indi�erent between the two movies.

In this theorem �nite means that the sets of players and strategies are �nite. We have omitted

the proof of this theorem, but the theorem can be proven using Brouwer’s �xed-point theorem.

Suppose a mixed-strategy pro�le is not a Nash equilibrium because at least one player is not

best responding. We can quantify how “close" the pro�le is to being an exact Nash equilibrium

using regret. Given mixed-strategy pro�le ®f , the regret for player 8 is de�ned as

n8 ( ®f) = max

B∈(8
D8 (B, ®f−8) − D8 ( ®f).

The overall regret for a pro�le ®f is de�ned as

n ( ®f) = max

8∈%
n8 ( ®f).

For a pro�le that is an exact Nash equilibrium, the regret is 0 for all players and therefore the

overall regret is also 0.

There are many scenarios in which it is di�cult (or even impossible
2
) to compute an exact

Nash equilibrium. Often it is more realistic to compute approximate Nash equilibria instead. An

approximate Nash equilibrium (also called an Y-Nash equilibrium) is a mixed-strategy pro�le ®f
such that regret( ®f) ≤ Y for some small value of Y. We will discuss motivations for �nding ap-

proximate equilibria and will present several algorithms to compute approximate Nash equilibria

in section 2.1.5.

An important intermediate quantity for this thesis is a deviation payo�. A deviation payo� is

the expected payo� a player would receive by deviating or changing strategies, given the mixed

strategies everyone else is playing. Given a mixed-strategy pro�le ®f , the deviation payo� for

player 8 and strategy B ∈ (8 is formally de�ned by

devPay8 (B, ®f) = D8 (B, ®f−8),

where D8 (B, ®f−8) is player 8’s expected utility when all opponents play according to ®f−8 and player

8 plays strategy B ∈ (8 . Additionally, the deviation payo� function for a player 8 and mixed-strategy

2
Due to representational limitations in �oating point precision.
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pro�le ®f is de�ned as

devPay( ®f) =
(
devPay

1
(B1, ®f), devPay

1
(B2, ®f), . . . , devPay= (B |(= |, ®f)

)
.

One bene�t of deviation payo�s is that we can characterize expected utilities, regret, Nash

equilibria and approximate Nash equilibria in the context of deviation payo�s. Given a mixed-

strategy pro�le ®f , player 8’s expected utility can also be de�ned as

D8 ( ®f) = f8 · devPay8 ( ®f).

The regret of a pro�le ®f can also be de�ned as

n ( ®f) = max

8∈%
devPay8 ( ®f) − D8 ( ®f).

Conceptually, the regret of a pro�le is the maximum payo� amount any player can gain by de-

viating to any other strategy. Thus a Nash equilibrium is a set of strategies such that no player

can gain by deviating to any other strategy. Similarly, an Y-Nash equilibrium is a set of strategies

such that no player can gain more than Y by deviating to any other strategy. In this thesis, we

aim to compute Y-Nash equilibria and evaluate success with regret.

2.1.2 Symmetric Games

Let Γ= = (%, (,D) be a normal-form game with = players, where

% = {1, . . . , =}
( = (1 × · · · × (=
D = (D1, . . . , D=).

Consider players 8, 9 ∈ % where 8 < 9 . De�ne Γ′= = (% ′, (′, D′) to be a normal-form game with =

players, where

% ′ = {1, . . . , 8 − 1, 9, 8 + 1, . . . , 9 − 1, 8, 9 + 1, . . . , =}
(′ = (1 × · · · × (8−1 × ( 9 × (8+1 × · · · × ( 9−1 × (8 × ( 9+1 × · · · × (=
D′ = (D1, . . . , D8−1, D 9 , D8+1, . . . , D 9−1, D8, D 9+1, . . . , D=).

Players 8 and 9 are symmetric in Γ= if Γ= = Γ′. Said another way, Players 8 and 9 are symmetric in

Γ= if they can be permuted and the same game results. A game Γ= is symmetric if every player is

symmetric to every other player in the game. A game Γ= is role-symmetric if the set of players %

can be partitioned into roles such that every player in a given role is symmetric to every other

player with that role and at least one role has more than one symmetric player.

Because all players can be permuted in a symmetric game without the game changing, the

identities or indices of the players ultimately do not matter. Thus, what determines each player’s

payo� is notwho is playing which strategy, but rather howmany players are playing each strategy.

A player con�guration ®2 is a :-vector that speci�es how many players are playing each strategy

in a symmetric game, where : is the number of strategies in the game. Also, an opponent pro�le ®B
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is a :-vector that speci�es how many opponents are playing each strategy in a symmetric game,

where

∑:
8=1
®B8 = = − 1.

We can rede�ne a symmetric game as Γ̃= = (=, (,D), where = is the number of players, ( =

{B1, . . . , B:} is the set of strategies available to all players and D is the utility function which maps

length-: player con�gurations to length-: payo� vectors. Each corresponding dimension in the

player con�gurations and payo� vectors corresponds to a particular strategy. Thus D 9 (®2) de-

scribes the payo� the players playing strategy B 9 receive when all players play according to ®2. Let

� denote the set of all possible player con�gurations:

� =

{
®2 ∈ Z: : ®2 9 ≥ 0,

:∑
9=1

®2 9 = =
}
.

Then the symmetric utility function is de�ned by D : � ↦→ R: . Finally, a symmetric pro�le is a

pro�le in which all players play the same strategy, either a mixed strategy or a pure strategy.

Based on experience playing the game, it makes sense that Rock-Paper-Scissors is symmetric

because the winning, losing, and tying payo�s are not dependent on player identity. Using the

simpli�ed symmetric game de�nition, we can express Rock-Paper-Scissors as a symmetric game:

= = 2

( = {R, P, S}
� = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}
D ((2, 0, 0)) = (0, 0, 0) D ((1, 1, 0)) = (−1, 1, 0)
D ((0, 2, 0)) = (0, 0, 0) D ((1, 0, 1)) = (1, 0,−1)
D ((0, 0, 2)) = (0, 0, 0) D ((0, 1, 1)) = (0,−1, 1).

One bene�t of symmetric games is the simpli�ed de�nition reduces the size of the payo�

matrix and therefore the amount of memory required to store the matrix. In general for a sym-

metric game with = players and : actions, |� | =
(=+:−1

=

)
=
(=+:−1)!
=!·(:−1)! since we are counting the

number of ways we can con�gure = players given = +: − 1 positions. If we �x : , it would require

$ (:=) outcomes to be stored in normal form compared to$ (=:−1) outcomes in symmetric form.

With = = 100 and : = 5, that translates to 5
100 ≈ 10

69
outcomes in normal form compared to

100
5 = 10

10. Another bene�t of symmetric games is the simpli�ed de�nition reduces the amount

of computation required to calculate expected utilities, deviation payo�s, regret, etc. Given a sym-

metric mixed-strategy pro�le, all players are mixing according to the same probabilities which

means all computations involve :-dimensional space as opposed to = · : .

2.1.3 Simulation-Based Games

For many of the interactions game theorists might be interested in modeling, historical data is

insu�cient to describe the interaction. Additionally, analytical or mathematical models require

greater precision or a deeper understanding about the incentives in the interaction than is feasible.

Thus a more realistic alternative is to combine agent-based modeling and multi-agent simulation

to construct a game-theoretic model. Such games are called simulation-based games [58] (also

known as empirical games [57] or black-box games [65, 31]). We can then apply any solution
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concept to analyze the game. Often this analysis entails �nding approximate Nash equilibria in

the game and then investigating what happens in equilibrium to answer our initial question about

the interaction. Because these game-theoretic models are constructed using simulation data as

opposed to real-world data, the goal is less about precisely predicting future behavior, and instead

about characterizing overarching trends about the interaction. Applications of simulation-based

game theory include trading agent competitions (TACS) [16, 59, 21, 22], credit networks [6], high-

frequency trading [54, 53, 55], and cybersecurity [60].

While simulation-based game theory can be used to construct other classes of game-theoretic

models, including Bayesian games [31] or extensive-form games [14], in this thesis we focus ex-

clusively on normal-form simulation-based games. Therefore we can think of a simulation-based

game as a game where no payo� matrix is known in advance but can be �lled in through a series

of simulations to construct a game-theoretic model. A high-level description of the simulation-

based game-theoretic model construction process is described in Figure 9. First, we de�ne a set of

players and a set of strategies for each player, and specify a set of rules by which the agents inter-

act with each other. Next, we simulate various combinations of pure-strategy pro�les, and �nally,

we record the associated noisy payo� estimates in the corresponding cell in the payo� matrix.

We refer the reader to Empirical Game-Theoretic Analysis (EGTA) [57] and Policy-Space Response
Oracles (PSRO) [27] for more details about popular simulation-based game theory frameworks.

Note that in practice we do not actually �ll out the entire normal-form payo� matrix but rather

use it as a black box that we can query to get noisy payo� estimates for a given pure-strategy

pro�le. Also, queries to the simulator are expensive, so we must develop analyses that minimize

the number of simulator queries.

Figure 9: High-level description of simulation-based game-theoretic model construction: we de-

�ne agents and their strategies, simulate each possible pro�le, and record payo� estimates in a

payo� matrix.

Many of the real-world interactions we want to model with simulation-based game theory

have a large, uncertain number of participants. The goal of this thesis is to develop analyses

that accommodate this uncertainty in the number of players. While there are other classes of

games in which the exact number of players is unknown, our initial focus is analyzing simulation-

based games with a variable number of players as it is more straightforward to specify a variable
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number of players in the simulation environment than in other settings. However, we hope our

techniques will be applicable to other classes of games. For the purposes of this thesis, we assume

we have access to some simulator and can query the simulator for noisy payo� estimates for a

given pure-strategy pro�le. This simulator is used to help build our labeled training set for our

neural network model.

2.1.4 Action-Graph Games

In this section we introduce action-graph games and action-graph games with additive function

nodes, which we use as a proxy for simulator data in our experiments in this thesis. The entire

section provides a short summary of work by [20].

An action-graph game (AGG) is a compact representation of a normal-form game where ac-

tions are represented as vertices and edges encode payo� dependence among actions [20]. For-

mally, an action-graph game is a tuple (%, (,�,D) where

• % = {1, . . . , =} is the �nite set of players.

• ( =
∏
8∈% (8 is the Cartesian product of each player 8’s strategy set (8 .

• � = (+ , �) is a graph where each E ∈ + corresponds to a distinct action in ( and an edge

(E1, E2) indicates that the number of players playing strategy 1 a�ects the payo� that the

players playing strategy 2 receive. Note that the converse is not necessarily true unless

(E2, E1) ∈ �.

• Let E ∈ + . De�ne # (E) = {D ∈ + : (D, E) ∈ �} to be the set of actions in the neighborhood

of action E which a�ect the payo� that players playing E receive.

• Further, let 2 (E) denote a particular con�guration of the neighborhood. That is, for each

D ∈ # (E), 2 (E) denotes how many players are playing vertex D. Then de�ne� (E) = ⋃
2 (E)

to be the set of all possible player con�gurations of the neighborhood of action E .

• D = (DE1
, DE2

, . . . , DE |+ | ), where DE 9 : � (E 9 ) ↦→ R for E 9 ∈ + . Unlike in normal-form games

where we de�ne a utility function for each player, in action-graph games we are de�ning

a utility function for each distinct action.

Consider the following real-world-inspired example. MumFest is an annual festival in historic

downtown New Bern, NC that has a variety of vendors and attractions, including homemade

treats and crafts, amusement park rides, street performers, music performances, and pretty much

any type of fried food imaginable. For the festival the city closes several streets, including E Front

St, Broad St, and Pollock St, in order to create space for as many vendors as possible. Our task

is to construct a compact representation of a game which describes booth owners’ incentives for

choosing a particular booth location.

In this small example,
3

there are three di�erent types of booths: booths which serve Pepsi-

Cola (C), booths which have some sort of amusement park ride (R), and booths which both serve

Pepsi-Cola and have an amusement park ride (B). Also, there are four possible booth locations

along E Front St: !1, located at the intersection of Broad St and E Front St, !2, located at the

3
Inspired by the Ice Cream Vendor game in [20].
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intersection of Pollock St and E Front St, and �nally, !3 and !4, which are located on E Front

St bordering Union Point Park. Due to space constraints, vendors who both sell Pepsi-Cola and

have rides are restricted to only selecting a Union Point Park booth (!3 or !4). A booth’s payo� is

negatively impacted by the number of booths at neighboring locations that sell the same product

(�) or service ('). Additionally, Pepsi booths receive additional funding from Pepsi Co. the closer

the booth is to the birthplace of Pepsi-Cola on Pollock St; thus Pepsi booths at !2 receive the most

additional funding, then those at !1 and !3 and the least amount of funding at !4. Figure 10 shows

a graphical representation of the four possible booth locations.

!1

!2

!3

!4

Birthplace of

Pepsi-Cola

Union Point Park

Pollock St

Broad St

Figure 10: A graphical representation of the eastern section of downtown New Bern, NC showing

the four possible MumFest booth locations.

We can represent this game as an action-graph game as shown in Figure 11a. Each of the

four �8 nodes illustrate where Pepsi-Cola booths can be located, as shown by the (� dotted box

in 11b; similarly, the (' dotted box in 11b shows the possible locations for amusement park ride

booths. Finally, the (� dotted box demonstrates that booths which both sell Pepsi-Cola and o�er

an amusement park ride can only be located at either location 3 or location 4. The edges between

the nodes encode geographical neighboring relationships.

Like the MumFest AGG shows, action-graph games are constructed independent of the num-

ber of players in the game, which is one way they are able to represent games with a large number

of symmetric or semi-symmetric
4

players compactly. Action-graph games are universal because

they can represent any normal-form game, although their advantage comes from compactness

in special cases. AGGs are not a particularly useful representation for simulation-based games

because the underlying structure required to represent as an AGG is not known in advance and it

would be ine�cient to �ll in the entire payo� matrix �rst and then represent the game as an AGG.

However, AGGs, speci�cally BAGG-FNAs (described on the next page), are a powerful game rep-

resentation because they can be structured and randomly generated in a way that is similar to

the underlying structure of a simulation-based game. Therefore we use random BAGG-FNAs as

proxies for simulator data.

4
Semi-symmetric meaning that two players have some actions and corresponding utilities that overlap
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Figure 11: (a) Mumfest vendor game represented as an action-graph game and (b) Strategy sets

for each role highlighted in Mumfest AGG.

A bipartite action-graph game with additive function nodes (BAGG-FNA) is a special type of

action-graph game and is de�ned by tuple (%, (, �,�,, ,D, 5 ) where

• % = {1, . . . , =} is the �nite set of players.

• ( =
∏
8∈% (8 is the Cartesian product of each player 8’s strategy set (8 . De�ne S =

⋃
8∈% (8

to be the set of distinct strategies in (.

• � is the �nite set of function nodes.

• � = (+ , �) is a graph where + = S ∪ � , S and � are independent sets and � = {(D, E) : D ∈
S, E ∈ � or D ∈ �, E ∈ S.

• , = {,(D,E) : D ∈ � and E ∈ S} is the set of function-strategy weights.

• Let E ∈ + . De�ne # (E) = {D ∈ + : (D, E) ∈ �} to be the set of nodes in the neighborhood

of node E . Note that if E ∈ S then # (E) ⊆ � and if E ∈ � then # (E) ⊆ S.

• Further, let 2 (E) denote a particular con�guration of the neighborhood of E . That is, for each

D ∈ # (E), 2 (E) denotes how many players are playing node D. Then de�ne � (E) = ⋃
2 (E)

to be the set of all possible player con�gurations of the neighborhood of node E .

• 5 = (51, 52, . . . , 5|� |), where 5E : � (E) ↦→ R for E ∈ � .

• D = (DB1, DB2, . . . , DB |S | ), where DB 9 : � (B 9 ) ↦→ R for B 9 ∈ S. More speci�cally, DB 9 =∑
E∈# (B 9 ),(E,B 9 ) · 5E (� (B 9 )) . In other words, DB 9 is equal to the weighted sum of the func-

tion outputs for the function nodes in the neighborhood of strategy node B 9 ∈ S.
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Action
Nodes

Function
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Action
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Figure 12: RPS represented as a bipartite AGG with additive function nodes.

Figure 12 shows Rock-Paper-Scissors encoded as a bipartite AGG-FNA. There are three action

nodes corresponding to actions R, P and S. There are three function nodes corresponding to

“counters" for the number of players playing (R or P), (P or S), and (S or R). The function tables

are shown below each function node; all function tables happen to be the same, but this is not

usually the case. Given function table [1, 0, 1] for a given function node E , the function node

outputs 1 when 0 players are playing strategies in the neighborhood of E , 0 when exactly 1 player

is playing a strategy in the neighborhood of E , and 1 when exactly 2 players are playing a strategy

in the neighborhood of E . The blue edges mean that the corresponding edge weight is 1 and the

red edges mean that the corresponding edge weight is -1. We have represented the bipartite graph

in this way with action nodes showing up twice so it is easier to see the action nodes passing as

input to the function nodes the number of players playing that action and then the function nodes

sending the output to the corresponding action nodes.

Suppose one player plays R and the other player plays P. Then

count(R or P) = 1 + 1 = 2 ↦→ 1,

count(P or S) = 1 + 0 = 1 ↦→ 0,

count(S or R) = 0 + 1 = 1 ↦→ 0.

So,

D (R) = −1 · 1 + 1 · 0 = −1,

D (P) = 1 · 1 + −1 · 0 = 1,

D (S) = 1 · 0 + −1 · 0 = 0.
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Now suppose both players play R. Then

count(R or P) = 2 + 0 = 2 ↦→ 1,

count(P or S) = 0 + 0 = 0 ↦→ 1,

count(S or R) = 0 + 2 = 2 ↦→ 1.

So,

D (R) = −1 · 1 + 1 · 1 = 0,

D (P) = 1 · 1 + −1 · 1 = 0,

D (S) = 1 · 1 + −1 · 1 = 0.

We can repeat this process for all possible player con�gurations to con�rm that the game has

been properly encoded as a BAGG-FNA.

In one sense generating a random game amounts to generating a random payo� matrix. How-

ever, a payo� matrix �lled with random numbers is not useful because the interaction we are

trying to model is not random. The additive function nodes in a BAGG-FNA allow us to generate

random payo� functions that are complex but still have some underlying structure, which is much

more realistic. As a result, in this thesis we use random BAGG-FNAs as proxies for simulator data

in our experiments.

2.1.5 Approximate Nash Equilibrium Computation

The computational complexity of �nding a Nash equilibrium in games with various settings (i.e.,

2 vs ≥ 2 players, zero sum vs general sum, etc.) is a heavily studied problem within theoretical

computer science. Computing a Nash equilibrium in a �nite,=-player general-sum game is PPAD-

complete [7]. This means that there is no polynomial-time algorithm we can use to �nd Nash

equilibria in a game. In fact, the only setting in which there exists a polynomial-time algorithm

to compute a Nash equilibrium is 2-player zero-sum. Even in a 2-player general-sum game it can

take exponential time to compute a Nash equilibrium. As a result, it is frequently more realistic

to compute an approximate Nash equilibrium as opposed to an exact Nash equilibrium.

Another factor which prevents us from computing an exact Nash equilibrium in an =−player

general-sum game is computational limitations in �oating-point representation. Machine preci-
sion describes the largest gap in �oating-point representation, which is the gap between 1 and the

next largest number. It provides a bound on the relative roundo� error due to the machine. For

double-precision �oating-point format, machine precision is equal to 2
−52 ≈ 10

−16. This means

that we can trust the computer to accurately represent a given number up to 16 decimal places.

As a result, we are unable to compute an exact Nash equilibrium in a game if the mixed-strategy

probabilities are irrational or require more than 16 decimal places of precision.

How can we compute an approximate Nash equilibrium in an =-player, general-sum game?

We can classify approximate Nash-�nding algorithms as either complete, special case, or incom-
plete. Lemke-Howson [28] and Govindan-Wilson [15] (also known as the global Newton method)

are examples of complete Nash-�nding algorithms—they are exponential but are guaranteed to

converge to an approximate Nash equilibrium. Fictitious play [4] is an example of a special-case

algorithm because it is guaranteed to converge in the 2-player zero-sum setting, but is incomplete
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in the =-player general-sum setting. Incomplete Nash-�nding algorithms are algorithms which

are not guaranteed to converge to an approximate Nash equilibrium, but when they do they tend

to converge quickly. Replicator dynamics [48] is an example of an incomplete algorithm for the

=-player general-sum setting. When applied to games with a large number of players, these al-

gorithms do not converge quickly (if they do converge) because both methods involve summing

over the entire payo� matrix multiple times, which is computationally expensive in games with a

large number of players. However, the bene�t of the algorithms discussed—�ctitious play, global

Newton method and replicator dynamics—is that all algorithms can be rewritten to use the de-

viation payo� function (and its derivative in the global Newton algorithm). Sokota et al. [45]

replaced this ground truth deviation payo� function with a learned deviation payo� function in

order to compute approximate Nash equilibria relatively quicker.

In this thesis, we use replicator dynamics as our Nash-�nding algorithm. Replicator dynam-

ics [48] was initially used to study how competition a�ects population proportions for di�erent

species from an evolutionary perspective. To understand how this algorithm can be applied to

game theory, we can think about the competing species as actions and the mixed-strategies as

the population proportions.

Algorithm 1 provides pseudocode for the replicator dynamics algorithm using deviation pay-

o�s. First, we compute the minimum payo� for each player 8 . For each dimension 9 of the mixed-

strategy pro�le ®f (and therefore the corresponding player 8), we update ®f 9 by multiplying ®f 9 by

the di�erence between the deviation payo� player 8 would receive by deviating to B 9 and the

minimum payo� for player 8 . In other words, we multiply ®f 9 by the maximum amount player 8

could gain by deviating to pure-strategy B 9 . The larger the di�erence, the more player 8 can gain

from playing B 9 and therefore the more player 8 wants to mix over B 9 . After we have repeated this

process for all B 9 ∈ ( , we normalize the updated ®f to ensure that the sum of each mixed strategy

is equal to 1 and all dimensions have probability between 0 and 1. The updated ®f now places

a higher probability on strategies where the corresponding player can gain more payo� and a

lower probability on strategies where the corresponding player can lose more payo�. We repeat

this process for a pre-speci�ed number of iterations. Then, if the regret of the �nal ®f is less than

or equal to some Y, we say ®f is an Y-Nash equilibrium.

Algorithm 1 Computing approximate Nash equilibria using replicator dynamics.

replicatorDynamics(Γ= , ®f , n , numIters):

o�set← [min(Γ= , 8) for each player 8]

repeat
®f ← ®f · (DevPays(Γ= , ®f) - o�set)

®f ← ®f /

∑( ®f)

until numIters

if Regret(Γ, ®f) ≤ n
return ®f

return -1
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2.2 Deep Learning
Deep learning is a subset of machine learning that generally refers to neural networks. In section

2.2.1 we will describe how arti�cial neurons are organized to create neural networks, and in

sections 2.2.2 and 2.2.3 we will describe how to optimize a neural network model.

2.2.1 Introduction to Neural Networks

Arti�cial neurons are the basic units of neural networks. They are loosely inspired by biological

neurons, which are the building blocks of the brain, and are used for sensing. A neural network is

a group of arti�cial neurons organized into layers that collectively learn a mapping from inputs

to outputs. Under certain conditions, an arti�cial neuron in a neural network may activate or

“turn on." The intensity of this activation is roughly related to how much that neuron a�ects the

outputs of the neural network. An arti�cial neuron’s activation is in�uenced by the activations of

neurons in the previous layer of the neural network. These neighboring neurons are sometimes

called input neurons to the given arti�cial neuron. The arti�cial neuron also sends its activation

to output neurons in the next layer of the neural network and in�uences the output neurons’

activations to varying degrees.

G1

G2

G3

...

G=

0

1

F0

F1

F2

F3

F=

Figure 13: A graphical representation of a simple arbitrary arti�cial neuron.

Figure 13 shows a graphical representation of an arti�cial neuron. The arti�cial neuron is

represented by a circular node in the center. The input neurons are labeled G0, G1, G2, . . . , G= , where

= represents the total number of input neurons. A connection between the arti�cial neuron and

one of its input neurons is represented by a directed edge, where the source of the edge is the

input neuron and the destination of the edge is the original arti�cial neuron. Each directed edge

has an associated weight, which quanti�es how much the input neuron a�ects the activation

of the current neuron. Observe that input neurons G1, . . . , G= appear to the left of the arti�cial

neuron, but a neuron G0 labeled with a 1 appears above it. This special neuron’s activation is

always set to 1, and the weightF0 corresponds to the bias term, which is similar to a ~-intercept.

In this �gure the neuron sends output activation 0 to a singular output node, but in most cases

this activation would be sent to many neighboring nodes in the next layer of the neural network.

Given a vector of inputs, an arti�cial neuron computes a weighted sum of these inputs added

with the bias term; equivalently, an arti�cial neuron computes the dot product of the weight and

input vectors. This sum is passed as input to some activation function, which determines the
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intensity of the neuron’s activation. This activation function determines mathematically how

much that neuron contributes to the activation of neighboring neurons in the next layer and

eventually the output(s). Table 1 de�nes several common activation functions. Note that the

activation for a linear neuron is simply the dot product of the input and weight vectors. For this

thesis, the Recti�ed Linear Unit (ReLU) activation function is the most frequently used.

Function Name Function De�nition
Linear 5 (G) = G
Sigmoid (f) 5 (G) = 1

1+4−G
Recti�ed Linear Unit (ReLU) 5 (G) = max(0, G)
Hyperbolic Tangent (tanh) 5 (G) = 4G−4−G

4G+4−G

Table 1: De�nitions for common neural network activation functions.

A neural network architecture speci�es an organization of arti�cial neurons in the neural net-

work. More speci�cally, it establishes the number of layers, the number of neurons per layer, the

activation functions for each neuron, and the connections or edges between neurons in adjacent

layers. Every neural network has an input layer and an output layer. Any layer in a neural net-

work that is not an input or output layer is called a hidden layer. A hidden or output layer is said

to be fully connected or dense if every neuron in the layer is connected to every neuron in the pre-

vious layer. Neural networks are a part of deep learning because many neural networks are quite

deep, meaning that they contain many (sometimes hundreds) of layers. Often the complexity of

the architecture is related to the di�culty of the learning problem.

Figure 14 shows an example of a neural network architecture. The network contains three

input neurons (G1, G2, G3), a fully-connected hidden layer with six sigmoid neurons (f), a hidden

layer with four ReLU neurons (_/) and an output layer with two neurons (~1, ~2). Note that

because there are so many layers, the weight labels have been omitted to improve readability

but each directed edge is still associated with a weight parameter. Additionally, note that all

neural networks discussed in this thesis are feed-forward neural networks because they can be

represented as directed acyclic graphs (DAGs).

G1

G2

G3

f

f

f

f

f

f

~1

~2

Figure 14: A simple neural network architecture with three input neurons, a hidden layer with six

sigmoid neurons, a hidden layer with four ReLU neurons and an output layer with two neurons.
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2.2.2 Neural Network Parameter Optimization

In the previous section, we discussed how each arti�cial neuron in a neural network has an asso-

ciated activation function as well as a weight vector and bias term. How do we take this neural

network architecture and turn it into something that can make meaningful predictions? The su-

pervised learning process is divided into three phases: the training phase, the validation phase

and the tesitng phase. The training phase is the phase in which the parameters of the model—the

weights and biases—are optimized. The validation phase is the phase in which the hyperparame-

ters are optimized. Hyperparameters are variables of the model that are not the weights or biases,

but still have an e�ect on the outputs. This phase of the process will be discussed in greater detail

in section 2.2.3. Finally, the testing phase is the phase where we use our optimized neural network

to make predictions on new unlabeled data.

The training phase can be further subdivided into two stages: forward propagation and back-

propagation. First, we initialize the weights and biases with random real values. Next, we prop-

agate forward through the network. Equivalently, we compute the activations for each arti�cial

neuron in the neural network (using the process described in section 2.2.1), starting with the

neurons in the �rst hidden layer and ending with the neurons in the output layer.

These output activations (or output activation) serve as our prediction or estimate of the

ground truth, which is the “correct" output associated with the given inputs, based on the labeled

training dataset. We measure how good of a guess this estimate is using an error or loss function.

The most common loss function for regression is Mean Squared Error (MSE) and is de�ned as

MSE =
1

#

#∑
8=0

(~8 − ~̂8)2

where ~ is the ground truth and ~̂ is the predicted output. Another common regression loss

function is Mean Absolute Error (MAE) which is de�ned as

"�� =
1

#

#∑
8=0

|~8 − ~̂ |.

Our objective in this training phase is to �nd the weights and biases that minimize the loss

function. From calculus we know that we want to �nd the parameter values such that the deriva-

tive of the loss function is zero. Since we have more than one parameter in our model, we will be

dealing with partial derivatives or gradients. Now, we can update each parameter according to a

root-�nding method. One of the most well known root-�nding algorithms is Newton’s method:

G8+1 = G8 −
G8

5 ′(G8)
,

where G8 denotes the value of parameter G at iteration 8 and G8+1 denotes the new value of G after

the update. This method is appealing because it has provable convergence and error guarantees,

but it requires us to know both the function output and the (partial) derivative, which may not be

de�ned or may not be straightforward to compute. The root-�nding commonly used to update

neural network parameters is called gradient descent. Recall that the negative gradient tells us the

direction of steepest descent. Thus we can use the negative error gradient to update our weights

30



in the direction of steepest descent on the error surface to reach a local minima. Formally, we can

update the weights of our neural network using gradient descent using the following formula:

F = F − [ · mMSE

mF
, (2)

where [ represents the learning rate. The intuition behind this formula is that the error gradient

mMSE

mF
tells us how much that weight contributed to the overall error, and so we want to update our

weight in the opposite direction (to decrease the error). We multiply the negative error gradient

by the learning rate, which is a hyperparameter that controls the speed of the learning—since

we are making changes to all of the parameters in a given epoch, we want small tweaks to each

weight to help ensure we are still decreasing the loss.

Because each arti�cial neuron has several parameters, we need partial derivatives for each of

them. Instead of calculating partial derivatives fully for each parameter (independent from partial

derivatives in previous layers), we can take advantage of the chain rule and store intermediate

partial derivatives to save computation time. Given functions ~ (G) and I (~), the chain rule tells

us that

mI

mG
=
mI

m~
·
m~

mG
.

The process of using the chain rule to e�ciently update the model parameters from the end of

the network to the start is called backpropagation.

Consider the neural network in Figure 15. This neural network is represented using a com-
putational graph, where the rectangular nodes represent input (left) or output (right) and the

circular nodes represent arti�cial neurons with activation functions.

G1

G2

5 (G1, G2)

0

1

2 5

F1

F2

F3

F4

F5

F7

Figure 15: A simple example of a neural network represented by a computational graph.

31



Observe that the “usual" labels appear in the graph—the input, weight and output labels—but

additionally there are labels 0, 1, 2 and 5 . We can rewrite the neural network as a composition of

activation functions, where

0 = max(0,F1G1 +F2G2)
1 = max(0,F3G2)
2 = max(0,F40 +F51)
5 = max(0,F62)

and MSE = (~ − 5 )2. Note that 5 represents the neural network function 5 (G1, G2).
Next, we can calculate the partial derivatives for each intermediate variable:

m5

m2
=

{
F6 5 > 0

0 5 ≤ 0

m2

m1
=

{
F5 2 > 0

0 2 ≤ 0

m2

m0
=

{
F4 2 > 0

0 2 ≤ 0

m1

mG2

=

{
F3 1 > 0

0 1 ≤ 0

m0

mG2

=

{
F2 0 > 0

0 0 ≤ 0

m0

mG1

=

{
F1 0 > 0

0 0 ≤ 0

and the partial derivative of the loss function with respect to 5 :

mMSE

m5
= −2 · (~ − 5 ).

Additionally, we know that

m5

mF6

= 2
m2

mF5

= 1
m2

mF4

= 0

m1

mF3

= G2

m0

mF2

= G2

m0

mF1

= G1

Then, using the chain rule we have

mMSE

mF6

=
mMSE

m5
·
m5

mF6

= X 5 ·
m5

mF6

mMSE

mF3

=
mMSE

m5
·
m5

m2
·
m2

m1
·
m1

mF3

= X1 ·
m1

mF3

mMSE

mF5

=
mMSE

m5
·
m5

m2
·
m2

mF5

= X2 ·
m2

mF5

mMSE

mF2

=
mMSE

m5
·
m5

m2
·
m2

m0
·
m0

mF2

= X0 ·
m0

mF2

mMSE

mF4

=
mMSE

m5
·
m5

m2
·
m2

mF4

= X2 ·
m2

mF4

mMSE

mF1

=
mMSE

m5
·
m5

m2
·
m2

m0
·
m0

mF1

= X0 ·
m0

mF1
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We can use this information to update each weight according to formula 2:

F6− = [ · 2 · −2(~ − 5 ) F5− = [ · 1 · X 5 ·

{
F6 5 > 0

0 5 ≤ 0

F4− = [ · 0 · X 5 ·

{
F6 5 > 0

0 5 ≤ 0

F3− = [ · G2 · X2 ·

{
F5 2 > 0

0 2 ≤ 0

F2− = [ · G1 · X2 ·

{
F4 2 > 0

0 2 ≤ 0

F1− = [ · G1 · X2 ·

{
F4 2 > 0

0 2 ≤ 0

Generally speaking, we can update weights as follows:

Fℎ→>− = [ · act
′(ℎ8) · −2(~ − ~̂)

Fℎ8→ℎ 9− = [ · act
′(ℎ8)Xℎ 9 ·

∑
:∈=4GC

Xℎ:

where Fℎ→> denotes a weight between a hidden layer node and an output node, Fℎ8→ℎ 9 denotes

a weight between two hidden layer nodes, and act
′(ℎ8) is the activation of from the input node

associated with the given weight.

Thus far we have discussed using only one training example to update weights, but we want

to �nd the best weights for the entire training set. Theoretically, we could do forward propagation

and backpropagation on the entire training set. However, this is ine�cient because many datasets

are quite large and there is also likely some redundancy in that multiple data points might help

the neural network learn the same thing. Often researchers use stochastic gradient descent which

means that at each step, we select random samples from the training data to do forward propa-

gation and backpropagation. This random sample from the data set used for backpropagation is

called a batch and the batch size is an important hyperparameter of the model.

2.2.3 Neural Network Hyperparameter Optimization

Previously we observed that the objective of the training phase is to learn the “best” parameter

values. We de�ned “best” to refer to the set of parameter values which minimize the loss function.

Do we want our neural network to predict the exact outputs for each input in our training set?

To answer this question, consider a simple regression problem shown in Figure 16. In Figure 16a,

the line of best �t passes through every point exactly, whereas in Figure 16b, the line of best �t

describes a linear trend through the points. Recall that we want to train a model so it can predict

outputs for new inputs. Which model would likely give us better output predictions for new

inputs? The model which crosses through every point exactly in the training set (Figure 16a)

or the model which describes a general trend for the points (Figure 16b)? The answer is Figure

16b. In Figure 16a, the model is over�tting to the data whereas in Figure 16b the model will likely

generalize well to new data.

What does this mean for our objective in the training phase and in the overall supervised

learning process? While the mathematical objective in the training phase is to �nd the parameter

values that minimize the loss function, the overall objective of the supervised learning process is

to �nd the best parameter values such that the model generalizes well to new data. Mathemat-

ically, we want the value of our loss function on the trained dataset to be similar to that on the

validation dataset, which contains unseen labeled data points. Figure 17 is a typical plot showing

33



(a) (b)

Figure 16: Comparison of regression models where model (a) over�ts to the data and model (b)

generalizes well to new data.

Figure 17: A typical plot showing loss vs epoch number.

the loss vs epoch number for a model during the training stage. In general, as the slope of the loss

curve �attens, the model will tend to over�t to the training data more. Thus one of the objectives

of the validation stage is to determine the maximum number of training epochs that can be used

to decrease the loss before the model starts to over�t to the training data.

As previously stated, hyperparameters are variables of the model that are not the weights or

biases, but still have an e�ect on the outputs. These variables can help decrease the loss and

improve how well the model generalizes to new data. Since there is no principled way to select

them, unlike the parameters of the model, one usually tunes these hyperparameters empirically.

Common hyperparameters include:

• Number of hidden layers • Optimizer • Weight initialization

• Number of nodes per layer • Learning rate • Learning rate decay

• Type(s) of layers • Batch size • Batch normalization

• Choice of activation function • Number of epochs • Regularization
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We determine the best hyperparameter values during the validation stage. Most often it is

infeasible to enumerate all possible combinations of hyperparameter settings and evaluate each

model variation on the training and validation sets. To make the hyperparameter optimization

problem more tractable, for each hyperparameter we determine a range of values that we think

is appropriate. Some intuition behind picking these appropriate hyperparameter ranges comes

from prior experience with neural network hyperparameter optimization whereas some intuition

comes from experience working with similar types of problems. For example, from experience

we know not to set the learning rate to be large; instead we know that the learning rate will be

smaller, potentially 0.001 to 0.1. We also know that convolutional layers are particularly useful

for image classi�cation problems, from previous experience working with similar problems.

Now we can attempt to optimize these hyperparameters through one of two approaches: grid

search or random search. In a grid search, we specify representative intermediate values within

the range for each hyperparameter, enumerate all possible combinations of hyperparameter set-

tings and evaluate each model variation on the validation set. Because of the combinatorial nature

of this search method, it is essential to restrict the hyperparameter ranges as much as possible.

In a random search we randomly generate representative values within the range for each hyper-

parameter, enumerate all possible combinations of hyperparameter settings and evaluate each

model variation on the validation set. Finally, we select the model variation which produces the

lowest error on the validation set, where this error is close to the error of the training set.

In practice, it is often possible to “prune" hyperparameter settings—from one model variation

to the next, vary one parameter value at a time to try to infer how that parameter might a�ect

the model’s validation error. If several model variations perform relatively poorer than other

model variations for a �xed hyperparameter, that hyperparameter value is likely not the most

appropriate for the particular problem. Thus we may “prune" (or at least deprioritize) future

model variations where that particular hyperparameter has a similar value. Ultimately, these

search methods are educated trial-and-error methods, and with experience these searches become

more streamlined.
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3 Related Work

3.1 Learning Game Models from Data
A number of examples in the literature use machine learning techniques to solve problems in

game theory. In extensive-form settings, including Go and poker, signi�cant progress has been

achieved recently by using di�erent types of learning, including supervised, unsupervised, and

semi-supervised learning, to improve tractability for real-time game playing. For example, Sil-

ver et al. [42] combine supervised learning techniques using historical game data from human

experts and reinforcement learning based on simulated games of self-play in their AI AlphaGo.

More recently, Silver et al. [43] created AlphaGo Zero which defeated AlphaGo and no longer

requires supervised learning with historical game data from experts due to a more sophisticated

reinforcement learning technique. Brown and Sandholm [5] use reinforcement learning in their

AI Pluribus which outperforms the best human professionals in six-player no-limit Texas hold’em

poker. This success is particularly signi�cant because many of the previous top poker AIs were

limited to playing in two-player settings.

As previously discussed, many of the types of interactions we want to model using simulation-

based game theory involve settings with a large number of players and in some cases a large

number of strategies. As a result, several proposed techniques in the literature try to improve the

tractability of simulation-based game analysis. To address challenges that arise when analyzing

games with a large number of players, many works in the past have employed a player reduction

technique [61, 13, 62] and more recent works have applied regression techniques [63, 45].

In section 2.1.4 we discussed action-graph games [20] as a compact game representation for

normal-form games. Other compact game representations include graphical games [25] and

resource-graph games [19]. While these compact game representations do simplify the space

required to store payo� information as well as reduce the computation required for �nding Nash

equilibria, these representations generally require knowledge about the underlying structure of

the payo� functions that is not available in simulation-based settings. Ficici et al. [13], Hon-

orio and Ortiz [18], and Li and Wellman [30] have proposed methods for deducing this payo�

structure information from empirical data, but these methods have limited applicability.

Several papers have employed machine learning techniques to learn game models from data.

For example, Vorobeychik, Wellman, and Singh use low-degree polynomials, local regression, and

support vector machines to learn the payo� function in in�nite games with real-valued strate-

gies. [52]. Wiedenbeck, Yang, and Wellman use Gaussian process regression to learn the utility

function in symmetric games with a large number of players [63]. Areyan Viqueira, Cousins,

and Greenwald propose two algorithms to uniformly approximate simulation-based games with

a guaranteed �nite number of queries to the simulator. However, these proven bounds likely do

not scale well in settings with a large number of players. Li and Wellman introduce two algo-

rithms: a clustering algorithm to partition a set of players into roles, and an algorithm to learn a

graphical game model [30].

Most directly relevant is the work of Sokota et al. [45], who use a multi-headed neural net-

work to learn a mapping from role-symmetric mixed strategy pro�les to deviation payo�s. Their

technique takes advantage of player symmetries common in simulation-based settings in order

to learn the deviation payo� function in games with a large number of players. This learned

deviation payo� function is used in Nash-�nding algorithms to �nd approximate role-symmetric

36



equilibria in simulation-based games, without constructing an explicit payo� table. We generalize

the work of Sokota et al. to analyze symmetric simulation-based games with a variable number

of players.

3.2 Games with a Variable Number of Players
Many works in the literature evaluate how game-theoretic algorithms scale with the number

of players. For example, Wang et al. [56] present a multi-agent Q-learning algorithm for ser-

vice composition and evaluate the scalability of their method on a variable number of agents.

Panagopoulou [37] proposes an algorithm to compute approximate Nash equilibria in symmet-

ric bimatrix games, and evaluates the algorithm on two di�erent numbers of players. Sureka

and Wurman [46] use metaheuristic techniques including genetic algorithms and tabu search to

�nd the best response strategy in order to �nd Nash equilibria in combinatorial auctions. They

validate their results on a variable number of agents, ranging from 2 to 4.

However, few works investigate how game-theoretic models scale with the number of players.

In section 3.2.1 we present several simulation-based game-theoretic models in which the number

of players is a hyperparameter of the model. This is a limitation of how game theorists conceive
of game-theoretic models. Finally, in section 3.2.2 we discuss examples of analysis of games with

a variable number of players for other classes of games and economic models. For all classes of

games discussed, we describe how each example could bene�t from our technique.

3.2.1 Simulation-Based Games

Several examples in the literature analyze simulation-based games where the number of players

is varied. For example, Wah and Wellman [54] construct a simulation-based game to analyze the

e�ects of latency arbitrage in �nancial markets. Latency arbitrage is a high-frequency trading

strategy in which “an advantage in access and response time enables the trader to book a certain

pro�t." The authors analyze the same game with a variable number of background traders (24,

58, 238), but analyze each instance of the game separately because the number of players is a

hyperparameter of the model. For each of the three instances, they �nd symmetric equilibria in

the game and then evaluate background-trader surplus and latency arbitrageur pro�t (if applica-

ble) to conclude that latency arbitrage reduces surplus overall. Using our techniques, Wah and

Wellman could analyze the entire game at once, with the number of players ranging from 24 to

238, instead of analyzing each instance separately.

In addition to investigating the e�ects of latency arbitrage in �nancial markets [54], Wah and

Wellman [53] compare the welfare of traders in frequent call markets versus continuous dou-

ble auctions. They analyze four environments separately, varying the number of environmental

agents (8, 14, 42) and the mean-reversion parameter (̂ = 0.05, 0.01). Also, Wellman, Kim and

Duong [60] construct a simulation-based game to evaluate complex network routing protocols.

They separately analyze three di�erent environments of the game, with total number of non-

attacking nodes equal to 633, 2045, and 4956 non-attacking players (clients, ISPs, roots, servers)

in the three environments. The hope is that having equilibria that are robust within the range of

player counts will enable more meaningful analysis of and predictions about real-world games.
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3.2.2 Other Examples

Game-theoretic analysis of settings with a variable number of players also exists outside of

simulation-based game settings. For example, Tu�n and Maillé [50] model a TCP session us-

ing an Additive-Increase Multiplicative-Decrease (AIMD) process and �nd Nash equilibria in the

game to determine a stable number of parallel TCP sessions to open. In particular, they analyze

how the number of players (varied from 2 to 10) a�ects how many parallel TCP sessions should be

opened in equilibrium, where the number of players is a hyperparameter of the model. Another

hyperparameter of the model is U , which represents the price per TCP session. To determine

which pricing scheme helps manage connection congestion the best, the authors vary the U hy-

perparameter for a small range of alpha values and look at the number of TCP sessions as well as

corresponding revenue in equilibrium. Tu�n and Maillé were likely only able to perform such

analysis because the number of players, the size of the player-count range and the size of the

pricing range were small. Our technique could enable similar analysis more broadly, for a wider

range of parameter values.

Thompson et al. [49] use action-graph games to model voting in plurality elections. They in-

vestigate the probability of truthful vs. pure-strategy Nash equilibrium existence when the num-

ber of voters is varied from 3 to 96 and the number of candidates is varied from 3 to 5. While

the magnitude of this player-count range is large, the number of players is still a hyperparam-

eter of the model. The authors also explore the proportion of equilibria in which each type of

winner, truthful and Condorcet, is elected as the numbers of voters and candidates are varied.

The authors observed that “when voter number was odd, the probability of having no equilibria

at all increased dramatically." For the equilibria that do exist for each instance, it would be inter-

esting to explore pure-strategy robustness metrics which identify equilibria which are robust to

the number of voters as well as the voter-count parity. Further, it would be interesting to build a

model that distinguishes between the parity of the player count, maybe even making the parity

a feature of the model.

Additionally, game-theoretic analysis of settings with a variable number of players has been

conducted on other classes of games as well as in pure economics. Petruzzi, Pitt and Busquets

[38] evaluate the e�ect of varying the magnitude of population size on the performance of social

capital, given equal proportions of dominant, random, and social players. In the simulations, the

number of social players is varied from 15 to 300. Fatima [12] compares sequential and simulta-

neous auctions by varying the number of objects and bidders and evaluating the two mechanisms

on three properties: the expected cumulative surplus, the bidder’s ex-ante expected pro�t, and the

auctioneer’s expected cumulative revenue. Hanaki and Rouchier [17] use a di�erentiated-goods

Cournot competition to study whether ignorant agents can behave strategically to become richer

than informed agents instead of by luck. In their experiments, they specify a variable number

of ignorant and informed agents and compare average level of outputs and pro�ts for each type

of agent. The economics literature includes numerous examples of models with a continuum

of players, and a few deliberate attempts to generalize over the number of players. For exam-

ple, Kalai [23] develops a repeated-game model where players respond to aggregations over an

uncertain number of opponents.

In many of these examples, the number of players is a hyperparameter of the model. In the

remainder, the magnitude or range of player counts is relatively small, likely due to limitations on

available tools. Both demonstrate the need for analysis that spans a variable number of players.
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4 Variable-Player Game Model and Analysis
This section presents the main contributions of this thesis which aim to answer the following

questions:

1. How do we construct a variable-player game-theoretic model?

2. How do we analyze a variable-player game-theoretic model?

First, in section 4.1 we de�ne a variable-player game as well as an instance of a variable-player

game. In sections 4.2 and 4.3 we describe how we generalize Sokota et al.’s work [45] to learn a

variable-player game-theoretic model. Finally, in section 4.4 we discuss how to analyze a variable-

player game, de�ne the concept of robustness, and present several equilibrium robustness metrics.

4.1 Variable-Player Games
We de�ne a variable-player symmetric game as a tuple Γ̃<= = (%, (,D) where

• % = {<, . . . , =} de�nes a range of player counts, where< is the minimum number of players

and = is the maximum number of players in the game.

• ( = {B1, . . . , B:} is a set of strategies available to all players, where there are: total strategies.

• �<= = {®2 ∈ Z: : ®2 9 ≥ 0,< ≤ ∑:
9=1
®2 9 ≤ =} is the set of all possible player con�gurations

which varies with the number of players.

• D : �<= ↦→ R: .

For ®2 ∈ �<=, the utility function D 9 (®2) describes the payo� players playing strategy B 9 ∈ ( receive

when players play according to ®2. Note that in addition to �<=, the utility function D also varies

with the number of players. The number of players can be inferred from ®2 and is equal to

∑:
9=1
®2 9 .

Further, we de�ne an instance of a variable-player game by Γ̃? = (?, (,D) where

• ? is the number of players, with< ≤ ? ≤ =.

• ( = {B1, . . . , B:} is a set of strategies available to all players, where there are: total strategies.

• �? = {®2 ∈ Z: : ®2 9 ≥ 0,
∑:
9=1
®2 9 = ?}.

• D : �? ↦→ R:

Observe that a instance Γ̃? of a variable-player symmetric game Γ̃<= is a �xed-player symmetric

game.
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4.2 Approximating Deviation Payo�s
Sokota et al. [45] use a multi-headed neural network to learn the deviation payo� function for

games with a �xed number of players. We hypothesize that games with a variable number of

players have a di�erent, but related, payo� function for each instance of the game within the

player count range. More speci�cally, we hypothesize that the payo�s in a game with G players

are similar or related to the payo�s in the same game with G ± 1 players, given a large value of

G . As a result, the variable-player learning problem is much more complex than that of �xed-

player learning. With this hypothesis we generalize [45] to learn the deviation payo� function in

variable-player simulation-based games. This deviation payo� function maps symmetric mixed-

strategy pro�les and number of players to deviation payo�s for each strategy, and can be used in

Nash-�nding algorithms to compute robust approximate equilibria in games with a large, variable

number of players.

One of the motivations for learning the deviation payo� function is that it is intractable to

compute deviation payo�s in games where the number of players is large (and consequently in

variable-player games where the player counts in the range are large). How can we construct

our training dataset without actually calculating deviation payo�s? First, we can generate a

symmetric mixed-strategy pro�le ®f. Next, we can draw a strategy for each opponent according

to that pro�le and then we can query the simulator for the pure-strategy payo�s associated with

the pro�le. If we repeat this process many times for the same pro�le and look at the distribution

of payo�s, the deviation payo� is the expected value of the distribution. Thus we can use the

noisy pure-strategy payo� vector as an estimate for the deviation payo� vector to prevent us

from summing over the entire payo� matrix.

Formally, we train a multi-headed neural network on the mapping devPay : ( ®f, ?) ↦→ D ( ®f, ?)
where ®f is a symmetric mixed-strategy pro�le, ? represents the number of players where < ≤
? ≤ =, and D ( ®f, ?) represents doubly noisy pure-strategy payo� estimates from an agent-based

simulator. To generate an entry in our training set, we sample a symmetric mixed-strategy pro�le

®f ∼ Dir( ®U) from a Dirichlet distribution, where ®U = (U1, . . . , U:), and where U8 < 1 for all

U8 ∈ ®U. Sokota et al. [45] demonstrated the need to oversample the edges of the simplex, which

is why we use a Dirichlet distribution as opposed to a uniform distribution. To generate the

player count ? associated with mixture ®f , we propose two methods. In the �rst method, we

select several “representative instances" or player counts within the range and then randomly

generate ? ∼ * [<, 82, 83, . . . , =] uniformly from the list of representative instances. Alternatively,

we randomly select an associated player count ? ∼ * [<,<+1, . . . , =] uniformly across the entire

range of player counts.

Once we have our inputs ( ®f, ?), we can estimate the corresponding deviation payo�s accord-

ing to the following two-step process. First, we sample an opponent con�guration ®B ∼ ®f according

to ®f . Equivalently, for each of the ? − 1 opponents, we draw an independent random sample for

the mixture, which e�ectively assigns that opponent a particular strategy to play; then we count

how many opponents are playing each strategy in order to construct opponent con�guration ®B .
Next, we query the simulator for the pure-strategy payo� vector D (®B). Note that the number of

opponents is inferred from the fact that

∑:
9=0
®B 9 = ? − 1. The pure-strategy utility vector D (®B)

serves as a doubly noisy payo� estimate for the ground truth deviation payo� vector devPay( ®f)
because the pure-strategy utility vector is a noisy sample for a sampled opponent pro�le.
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After we have constructed our training set, we must normalize the input and output variables.

Let ( ®f, ?,D ( ®f, ?)) be an arbitrary entry in the training set. Because the �rst : dimensions of the

neural network correspond to entries in the :-dimensional symmetric mixed-strategy pro�le ®f ,

we do not need to normalize these dimensions in the training set. We normalize ? as follows:

? =
? −<
= −<,

where< is the minimum number of players in the game and = is the maximum number of players

in the game. For each of the : dimensions of D ( ®f, ?), we estimate the true game maximum and

minimum payo� values with the maximum and minimum payo�s returned from the simulator

for that dimension. Then for each dimension 9 corresponding to strategy B 9 ∈ ( , we normalize

D 9 ( ®f, ?) as follows:

D 9 ( ®f, ?) =
D 9 ( ®f, ?) −<8=_?0~ 9

<0G_?0~ 9 −<8=_?0~ 9
,

where<8=_?0~ 9 and<0G_?0~ 9 correspond to the minimum and maximum simulated payo�s in

the training set for strategy B 9 .

While the optimal neural network architecture likely depends on the particular class of game,we

have found that a multi-headed neural network with ReLU activation functions works well. In

this case, multi-headed refers to a “head" for each strategy, meaning that the network spends some

time training the deviation payo� function for each strategy B 9 ∈ ( individually. Figure 18 shows

a visual representation for the multi-headed neural network architecture used in our experiments

for the variable-player learning model. As the �gure shows, the neural network has : + 1 inputs:

the �rst : inputs correspond to probabilities for strategies B1 to B: for a given mixed strategy ®f ,

and the (: + 1)st dimension corresponds to a given player count ? . In this architecture there are

three 64-node hidden layers with ReLU activation and a head for each strategy with a 64-node

ReLU layer followed by a linear layer. Finally, the neural network has a :-dimensional output,

where output dimension 9 corresponds to the predicted deviation payo� for playing strategy B 9
when there are ? − 1 players playing according to ®f. We will discuss our variable-player learning

experiments thoroughly in section 5.

4.3 Approximating Robust Nash Equilibria
Most algorithms for identifying Y-Nash equilibria, including replicator dynamics [48], �ctitious

play [4], and the global Newton method [15], can be rewritten using deviation payo�s (and the

derivatives of deviation payo�s for the global Newton method). The neural network model can

output estimates of these values in time proportional to the size of the network, as opposed to

the size of the (exponentially larger) underlying normal-form game.

We present a variant on the algorithm proposed by Sokota et al. [45] to iteratively re�ne the

learned deviation payo� model by focusing on areas of the simplex that are more likely to contain

approximate Nash equilibria. After the model is trained, we run a Nash-�nding algorithm using

the learned deviation payo�s. For each returned candidate Nash equilibrium ®f with associated

player count ? , we draw mixtures ®f′ ∼ Dir( ®U = l<G · ®f + 1) in the neighborhood of ®f , where

l<G represents the mixture resample factor and where l<G >> 1. We draw normalized player
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Figure 18: A visual representation for the multi-headed neural network architecture used for our

variable-player learning model.

counts ?′ ∼ Beta( ®U = l? · [?, 1 − ?] + 1) in the neighborhood of ? , where l? represents the

player resample factor and wherel? >> 1. Figure 19 shows a simplex with color-coded points in

the neighborhood of a given mixture (pink star) for three di�erent values of l<G for a 3-strategy

game.

Figure 19: Simplex showing points in the neighborhood of a given mixture (pink star) for three

di�erent values of l<G for a 3-strategy game.

Using the same process as before, we sample an opponent pro�le ®B ∼ ®f′ and query the sim-

ulator to get a noisy estimate of the payo�s D (®B). All ( ®f′, ?′, D ( ®f′, ?′)) entries are added to the

initial training set, and the model is retrained. This process is repeated several times. On the

last iteration, instead of sampling in the neighborhood of candidate equilibria and retraining the
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network, we use the candidate equilibria returned from the Nash-�nding algorithm and apply

our robustness metrics (to be discussed in section 4.4) to make predictions.

Algorithm 2 provides pseudocode for computing approximate Nash equilibria in variable-

player games using our learned deviation payo� model. We would like to point out four details

regarding the �ndNash(regressor) call. First, for this thesis, we use replicator dynamics as our

Nash-�nding algorithm for reasons described in section 2.1.5. Also, we consider two variations

of this AppxRobustNashEqilibria algorithm, one where we have an intermediate max regret

check for each call to �ndNash(), eliminating candidate Nash with regret greater than the max

regret, and one where we do not have any intermediate regret check. We evaluate these two

variants in section 5. Further, the �ndNash() algorithm returns candidate Nash equilibria with

associated player counts; the algorithm only applies robustness metrics at the end, and not after

each call to �ndNash(). We will present several robustness metrics in section 4.4. Thus, without

the �ndRobustNash() call at the end of the algorithm, this AppxRobustNashEqilibria algo-

rithm essentially computes approximate Nash equilibria for each individual instance of the game,

irrespective of the approximate Nash equilibria computed for other instances. If we wanted to

compute robust approximate Nash equilibria in variable-player games using Sokota et al’s tech-

nique [45], we would need to train a neural network for each instance of the range and iteratively

re�ne each neural network separately according to the process above. In contrast, our variable-

player learning model allows us to train and iteratively re�ne a single neural network. Further,

as we will show in section 5, our variable-player learning model does so using less data.

Algorithm 2 Computing approximate Nash equilibria variable-player games using our learned

deviation payo� model.

AppxRobustNashEqilibria(numInitQueries, numResampQueries, numIters, ®U , ®l ,<, =):

[®f] ← Dir( ®U, numInitQueries)
[?] ← Uniform( [®f],<, =)
[®B] ← sampleOppPro�les( [®f], [?])
[®D] ← samplePSPayo�s( [®B])
data← ([®f], [?], [®D])
regressor.�t(data)

repeat
([®f∗], [?∗]) ← �ndNash(regressor)
( [®f], [?]) ← sampleNbhd( [®f∗], [?∗], ®l, numResampQueries)
[®B] ← sampleOppPro�les( [®f], [?])
[®D] ← samplePSPayo�s( [®B])
data← data + ([®f], [®B], [®D])
regressor.�t(data)

until numIters

([®f∗], [?∗]) ← �ndNash(regressor)
return �ndRobustNash( [®f∗], [?∗])
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4.4 Equilibrium Robustness Metrics
Typical game-theoretic analysis involves �nding approximate Nash equilibria in a game with a

�xed number of players. However, in variable-player games, �nding approximate equilibria for

the entire game is not necessarily feasible. For example, an approximate equilibrium in one in-

stance of the game might not be an approximate equilibrium in any other instances and therefore

it is not a good prediction of behavior in the interaction. Thus we seek to �nd a metric to evaluate

the robustness of a candidate equilibrium across all instances of the game. Since there is no sin-

gular metric appropriate for all contexts, we present several metrics to evaluate a pro�le across

the range of player counts: mean regret, median regret, max regret, and equilibrium frequency.

Mean Regret. The regret of a candidate Nash equilibrium ®f is computed for each instance of

the game and then averaged. If the mean regret falls under some speci�ed regret threshold Ȳ, we

say the candidate equilibrium is a robust equilibrium in the game. We hypothesized that average

regret might not be as useful of a metric because in general, outliers can dominate in averages.

For example, a candidate Nash equilibrium might be an approximate Nash equilibrium for many

instances of the game but have a high enough regret for one or a few instances and thus not be

classi�ed as robust based on the mean regret metric. However, this did not occur often in our

experiments.

Median Regret. Similar to the mean regret metric, the regret of a candidate Nash equilibrium

®f is computed for each instance of the game; then the median regret is computed. If the median

regret falls under some speci�ed regret threshold Y, we say the candidate equilibrium is a robust

equilibrium in the game. Our experimental results suggest that this metric is most useful when

paired with the mean regret metric—if a candidate Nash equilibrium is considered robust based

on both the mean regret metric and the median regret metric, then it is unlikely that any instances

of the game have outlier regret for that pro�le.

Max Regret. The regret of a candidate equilibrium ®f is computed for each instance of the game;

then the max regret is computed. If the max regret falls under some speci�ed regret threshold Y,

we say the candidate equilibrium is a robust equilibrium in the game. With this metric we know

that no player can gain more than Y by deviating to any other mixed strategy in any instance of

the game. In a sense, for a given pro�le this metric summarizes the “worst-case scenario.” As

such it is often the case that the Y for max regret is slightly larger than the corresponding Y for

other metrics that identify similar sets of equilibria.

Approximate Equilibrium Frequency. The approximate equilibrium frequency metric involves

counting the number of instances in which the candidate Nash equilibrium ®f is an Y-equilibrium,

and if the count is higher than some threshold U , then the candidate equilibrium is a robust

equilibrium in the game. This metric does not overpenalize a candidate equilibrium for having a

high regret for a few instances but being a good approximate Nash equilibrium overall.

Figure 20 compares robust equilibria found by the three robustness metrics in a randomly

generated 3-strategy game with 50 to 100 players using calculated regrets. Each point in the

simplex corresponds to a symmetric mixed strategy. In Figure 20 plots (a), (b), and (c), the color

shows the mean, median, and max regret respectively of the corresponding pro�le. Note that the

white points correspond to pro�les in which mean regret was greater than Ȳ (plot (a)), median

regret was greater than Y (plot (b)), or max regret was greater than Y (plot(c)). In Figure 20 plot

(d), the color shows how many times each mixture was an approximate equilibrium (for a �xed

Y). In this plot, the white points correspond to pro�les that were never approximate equilibria.
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In all four plots, the brighter points correspond to pro�les that are considered more robust. The

similarities between these four plots are typical for games with a variable number of players—in

our experiments we have found that the four robustness metrics tend to identify similar sets of

pro�les as robust equilibria.

(a) (b)

(c) (d)

Figure 20: Comparison of four robustness metrics on a randomly generated game: (a) average

regret metric, (b) median regret metric, (c) max regret metric, and (d) Y-equilibrium frequency

metric.
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5 Experiments
In our �rst set of experiments, we compare the deviation payo� learning performance of our

model, which we call variable-player learning (VPL), with that of Sokota et al. [45], which we

call �xed-player learning (FPL), on 250 randomly generated symmetric games. To compare these

two models, we look at two di�erent ways of generating the player counts for the VPL model

training data: randomly choosing player counts from a set of representative instances (player

counts) versus uniformly across the entire range. One hypothesis about the two methods is that

the uniform random selection of player counts does not allow for su�cient training time for

any single instance whereas the representative instances method would allow the learned model

to learn more of the deviation payo� function for several instances and be able to interpolate in

between those instances. The other hypothesis is that the representative instances method would

cause the model to over�t to those representative instances and that the uniform random method

would allow for the model to more evenly learn the deviation payo� function across the range

of player counts. Our experimental results demonstrate dramatically better performance for the

random method, supporting the second hypothesis.

In the second set of experiments, we evaluate our variable-player replicator dynamics algo-

rithm. In particular, we compare the performance on a model which has been retrained to focus

the learning on regions of the simplotope which are more likely to contain approximate Nash

equilibria with the performance on a model which trains on the same total amount of data ini-

tially with no retraining. We hypothesize that the retrained model will outperform the model

which receives all training data up front. While there remains room for further hyperparameter

optimization, our preliminary experimental results support this hypothesis, serving as a proof-

of-concept for the technique.

5.1 Random Game Generation
To serve as a proxy for simulator data, we generate random bipartite action-graph games with

additive function nodes with 5 strategies and a player range of 50 to 100 (refer to section 2.1.4 for

BAGG-FNA de�nition). The compact representation of these random symmetric games allows

for e�cient ground truth deviation payo� computation, which is useful to validate the learned

models in our experiments. Also, the random games can be easily de�ned with a variable number

of players. These random games have complex but learnable payo� functions, particularly com-

pared to common game distributions in related literature: substantially more challenging than

congestion games, but much more structured than uniform random games. We believe these

random games provide the best-available proxies for simulator data.

For our experiments, we generate random directed additive polynomial sine BAGG-FNAs, as

used by Sokota et al [45]. The subgraph containing edges from action nodes to function nodes

(i.e., function inputs/neighborhoods) is an Erdős-Rényi random bipartite graph. The subgraph

containing edges from function nodes to action nodes is a complete bipartite graph, which means

that every function a�ects every action. The action weights are randomly generated according to

a normal distribution with mean 0 and standard deviation 1 with some entries randomly masked.

Each function node computes the sum of a random long-period sine function and a low degree

polynomial with random coe�cients.
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Note that in a game with ? players, the function table stores outputs associated with 0 to ?

players. In a game where the number of players ranges from< to =, the payo� table associated

with the instance with ? players, where< ≤ ? ≤ =, is a subtable of the payo� table associated

with the instance with = players. Thus we can de�ne a BAGG-FNA with a variable number of

players—generate the game with = players and then all payo� information for instances< to =

is already stored in the function table.

5.2 Comparison to Existing Work
5.2.1 Experimental Speci�cation

For our experiments, we evaluate both the VPL and FPL models on 250 random additive polyno-

mial sine BAGGFNs with 50 to 100 players, 5 strategies and 10 function nodes. The FPL model

consists of six multi-headed neural networks, where each neural network learns the deviation

payo� function for a single instance of the game. The player counts associated with these six

instances are ? = 50, 60, . . . , 100. The VPL model consists of a single multi-headed neural net-

work with an additional input dimension that speci�es the number of players; this model learns

the deviation payo� function for the entire range of player counts. In all experiments, the total

amount of training data is constant. This means that if the total amount of training data is 60,000

training examples, then the VPL model is trained with 60,000 examples and each neural network

in the FPL model is trained with 10,000 examples. Based on Sokota et al.’s experiments [45], we

use at minimum 10,000 training examples per FPL neural network.

The FPL architecture used is identical to that described in [45], and consists of a multi-headed

neural network with 128-, 64-, and 32-node dense hidden layers and a head for each strategy

with a 16-node dense layer followed by a linear layer. The VPL architecture consists of a multi-

headed neural network with three 64-node dense hidden layers and a head for each strategy

with a 64-node dense layer followed by a linear hidden layer. The hyperparameters for the two

models are optimized separately, and for expediency, hyperparameters were tuned using other

random BAGG-FNA instances; in a simulation-based game, such tuning would be performed on

a hold-out set. Note that the FPL model hyperparameters are identical for all 6 neural networks.

For each instance, we evaluate network performance on 495 mixtures corresponding to points

on a lattice that evenly covers the simplex. We evaluate our FPL model on 6 instances (? =

50, 60, 70, 80, 90, 100) and our VPL model on the same 6 instances in experiment 1 and on 12 in-

stances (? = 50, 55, 60, . . . , 90, 95, 100) in experiment 2. Note that since VPL has learned the devi-

ation payo� function for the entire range, we could choose to evaluate network performance on

any instance(s) within the range, but chose these 12 for simplicity.

We evaluate accuracy using Mean Absolute Error (MAE), averaged across mixtures. For each

mixture we compute the absolute error between the predicted deviation payo� and the ground

truth deviation payo� for each strategy, and compute the average error across the 5 strategies.

These errors are computed on normalized deviation payo�s, so the average MAE tells us approxi-

mately what percentage we can expect our learned deviation payo�s to di�er from the calculated

deviation payo�s for each strategy. In both experiments we compute 95% con�dence intervals

for the mean and median of mixture-MAEs for each instance for a given model using the average

MAEs from 495 mixtures for all 250 randomly generated games. Note that in our results plots

(Figures 21 and 22), the con�dence interval bars are not visible—our sample size was large enough
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that the intervals are no larger than the width of the point or x that denotes the mean or median.

(a) (b)

Figure 21: (a) Experiment 1 with 60,000 training examples shows that FPL performs better when

both methods receive identical training data. (b) Experiment 1 with 90,000 shows that FPL per-

forms better when both methods receive identical training data, and shows diminishing returns

to additional data.

5.2.2 Experimental Results

In the �rst experiment, the VPL model’s training data player counts are generated using represen-

tative instances. We use the union of the training datasets from the FPL model to create the VPL

model training dataset. This means that the representative player counts are ? = 50, 60, . . . , 100.

Thus in this experiment, both models are trained using identical data. Figures 21a and 21b each

compare the FPL model and VPL model’s performances when trained on the identical data sets.

The models in Figure 21a are trained with 60,000 training examples (10,000 per FPL neural net-

work) and the models in Figure 21b are trained with 90,000 training examples. Note that OA
denotes the overall performance across all measured instances. Clearly the FPL model performs

signi�cantly better than the VPL model trained on representative instances. We believe that the

VPL model is over�tting to the deviation payo� functions for the representative player counts.

VPL model performance for instances in between the representative player counts was omitted

to improve �gure readability, but the VPL model did not perform well on these instances ei-

ther. Relative to FPL model performance, VPL model performance is also a lot less consistent

across the range of player counts. Observe that FPL model performance improved slightly with

90,000 total training entries as opposed to 60,000. These experimental results demonstrate that

this player count selection method is not e�ective in helping the VPL model learn the deviation

payo� function in games with a variable number of players.

In the second experiment, the player counts in the variable-player learning model’s training

data are randomly selected uniformly across the entire range< to =. Figures 22a and 22b com-

pare the FPL model and VPL model’s performances when the player counts are selected randomly

from the entire range. The models in Figure 22a are trained with 60,000 training examples (10,000

per FPL neural network) and the models in Figure 22b are trained with 90,000 training examples.

Note that OA denotes the overall performance across all measured instances. Contrary to VPL

model performance in experiment 1, the VPL model performs at least as well as the FPL model, if
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(a) (b)

Figure 22: (a) Experiment 2 with 60,000 training examples shows the potential for VPL to sig-

ni�cantly out-perform FPL, when VPL training data player counts are randomly selected from

< ≤ ? ≤ =. (b) Experiment 2 with 90,000 training examples shows greater consistency in FPL

with additional data, but VPL with random player counts still performing better.

not better. In this experiment, VPL model performance is much more consistent across the range

of player counts than FPL model performance. It is important to note that all FPL neural networks

were trained using the same hyperparameters. While this might contribute to the less consistent

performance across the range of player counts (as opposed to if each FPL neural network had

been optimized separately), it is a drawback of the FPL method that one must optimize hyperpa-

rameters for many neural networks (especially when the single VPL neural network performs as

well as it does). Consistent with experiment 1, observe that FPL model performance improved

slightly with 90,000 total training examples as opposed to 60,000. VPL model performance does

not show any noticeable improvements from 60,000 to 90,000 training examples, so we believe

60,000 training examples is su�cient for this model. These experimental results demonstrate

that the random player count selection method is e�ective in helping the VPL model learn the

deviation payo� function in games with a variable number of players.

5.3 Variable-Player Replicator Dynamics Evaluation
5.3.1 Experimental Speci�cation

Through this set of experiments, we want to determine whether the iterative re�nement is neces-

sary. We evaluate performance on 500 random additive polynomial sine BAGG-FNAs with 50 to

100 players, 5 strategies and 10 function nodes. We compare model performance for the following

four model variations:

Initial training points Resample/retrain? RD max regret Total training points

10,000 Yes Y ≤ 0.1 ∼20,000

10,000 Yes No check ∼50,000

20,000 Yes Y ≤ 0.1 ∼50,000

60,000 No Y ≤ 0.1 60,000

Table 2: Summary of variable-player replicator dynamics model variations evaluated.
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Note that “RD max regret" (sometimes referred to as “max regret check" or “intermediate

regret check") means that we eliminate candidate Nash with regret greater than some speci�ed

max regret threshold for each call to replicator dynamics. All four model variations have the

same VPL architecture—a single multi-headed neural network with three 64-node dense hidden

layers and a head for each strategy with a 64-node dense layer followed by a linear hidden layer.

For the learned variable-player replicator dynamics algorithm, there are a signi�cant number of

new hyperparameters, as summarized below:

• Number of initial queries • Number of resample queries

• Number of initial training epochs • Number of retrain epochs

• Number of replicator dynamics mixtures • Number of replicator dynamics iterations

• Max regret (if intermediate regret check) • Number of resample/retrain iterations

• l<G , the mixture resample factor • l? , the player count resample factor

In the next section we will present our results from an initial pass at optimizing the hyperparam-

eters. These results serve as a proof-of-concept for the learned variable-player model. That being

said, we believe we can reduce the regret error with further hyperparameter optimization in the

future.

Similar to the previous experiments, we evaluate accuracy using Mean Absolute Error (MAE).

For each candidate Nash equilibrium and associated player count, we compute the absolute error

between the predicted and ground truth regret for that instance, and then compute the MAE

across all mixtures. These errors are computed based on normalized deviation payo�s which were

used to compute predicted and ground truth regret values, so the MAE tells us approximately

what percentage we can expect our predicted regret to di�er from the ground truth regret for

a given pro�le. We also compute 95% con�dence intervals for the MAE for all candidate Nash

equilibria and all 500 randomly generated games. Note that for some points in our results plots,

the con�dence interval bars are not visible—our sample size was large enough that the intervals

are no larger than the width of the point that denotes the MAE.

5.3.2 Experimental Results

Results from the four model variants evaluated on variable-player replicator dynamics are shown

in Figure 23. Observe that the variable-player learning model with training data spread out

through initial training and retraining and with intermediate regret check (max regret = 0.1)

outperforms the model with all training data used up front with no retraining and the model

with data spread out through initial training but without intermediate regret checks.

Note that resample/retrain iteration 0 refers to model results after the initial training (before

any resampling/retraining), and each subsequent iteration 8 speci�es how many times the model

has been retrained before it was evaluated. Also, we did evaluate performance on the model with

60,000 initial training points after all 5 iterations of resampling and retraining. In this experiment,

adding more data through resampling and retraining did not improve model performance—the

regret MAE hovered around 0.3 for all 6 iterations. As a result, that line has been omitted to

improve �gure readability and replaced with a star representing the regret MAE after the initial

training. Additionally, note that every so often a mixture in replicator dynamics migrates to

a region of the simplex which we have not focused training on, and the deviation payo� (and

50



therefore regret) MAEs are quite large. This problem only occurs every few experiments, and

if it does occur in an experiment with 500 games, it only happens for a single game and one

particular retraining iteration. That being said, the estimates are bad enough to mess up the

MAE con�dence bars for the entire experiment. Clearly, this is an issue that we need to address

in the future. However, because it is so rare and likely caused by resampling hyperparameters

that are not fully optimized, we temporarily ignored experiments where this corner-case occurred

in order to give a better understanding of overall model performance.

Figure 23: The variable-player learning model with training data spread out through initial train-

ing and retraining and with intermediate regret checks outperforms the model with all data up

front and no retraining and the model with data spread out through initial training but without

intermediate regret checks.

Figure 24 shows regret MAE performance for each instance from 50 to 100 players and for each

of the 6 training/retraining iterations of the best-performing model (20k initial training points,

resampling/retraining, intermediate regret check). Note that the �nal resample/retrain iteration

(iteration 5) is depicted with a solid black line to emphasize that the model performance is best

for this �nal iteration. Observe how model performance improves for each additional resample

and retrain iteration, particularly on instances with higher player counts. This further supports

the e�ectiveness of the iterative re�nement in our variable-player learned model.
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Figure 24: The model with 20,000 initial training data points, resampling/retraining, and inter-

mediate regret check shows improvement in regret MAE after each resample/retrain iteration,

particularly on instances with higher player counts.

6 Conclusion
Many of the real-world interactions we want to model with simulation-based game theory have

a large, uncertain number of participants. However, current game-theoretic analysis is limited to

analyzing games with a �xed number of players. Several works in the literature conduct game-

theoretic analysis for settings with a variable number of players, but in all cases either the number

of players is a hyperparameter of the model, therefore requiring that each instance is analyzed

separately, or the magnitude or range of player counts is relatively small, possibly due to lim-

itations on available tools. Both cases demonstrate the need for analysis that spans a variable

number of players.

The main contribution of this thesis is that we propose a new type of analysis which accom-

modates this uncertainty in the number of players. First, we de�ne a variable-player game, where

the number of players is endogenous to the game-theoretic model as opposed to a hyperparameter

of the model. Next, we present an algorithm for identifying robust approximate Nash equilibrium

and propose several measures of equilibrium robustness to quantify how well a given candidate

equilibrium generalizes across a range of player counts. Our experiments demonstrate that our

variable-player learning model outperforms the state-of-the-art �xed-player learning model [45]

and even uses less data. Additionally, we experimentally showed that our iterative re�nement

algorithm with intermediate regret check and training data spread out for each (re)training it-

eration outperforms the model with all training data used up front as well as the model with

resampling but no intermediate regret check. Our hope is that this technique will enable more

meaningful predictions about behavior.

Future work for this project includes extending the learning technique to analyze variable-
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player role-symmetric games as well as evaluating model performance on other classes of random

games and on actual simulator data. Further, we would like to generalize this technique on other

continuous parameters of the simulation environment. Finally, we hope to continue to explore

the types of analysis that are enabled by variable-player learning, from investigating alternative

notions of robustness to exploring entirely new solution concepts for variable-player games.
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