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Payoff Data

Our techniques are particularly relevant for analyzing 
simulation-based games, where the payoff matrix is not 
known in advance but can be filled through a series of 
multi-agent simulations. 

Applications of simulation-based games:
• Latency arbitrage by high-frequency traders [4]
• Debt consolidation among financial institutions [2] 
• Credit network liquidity [1] 
Typically, the underlying agent-based model has many free 
parameters such as the number of background traders [4], 
recovery rate [2], and the probability of defaults [1]. Each 
parameter setting results in a distinct normal-form game. 
Existing techniques require separate model construction and 
analysis for each parameter setting, so in practice the 
environment parameter space is usually underexplored. 
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Background Research Questions Comparison to Existing Work
• Normal-form game: a mathematical model of incentives 

which includes
• A fixed set of players 
• The possible actions (strategies) they can play
• Each player’s payoff function

• Deviation payoff: the expected payoff a player would 
receive by deviating or changing strategies, given the 
mixed strategies everyone else is playing

• Regret: the maximum payoff amount any player can gain 
by deviating to any other strategy

• Nash equilibrium: a set of strategies such that no player 
has an incentive to deviate

1. How can we use machine learning to construct a      
game-theoretic model that generalizes over variable 
environment parameters? 

2. What types of game-theoretic analysis of the parameter 
space does the learned model enable?

Variable-Parameter Learning (VPL) outperforms               
Fixed-Parameter Learning (FPL) [3] on random additive and 
multiplicative sine games with 90 to 100 players, given the 
same training data per instance.

Methodology
• Game family: a set of game 

instances that are related by 
one or more ordinal 
environment parameter(s)

• Hypothesis: game instances 
from the same game family 
likely have related payoff and 
deviation payoff functions

• We use a multi-headed 
neural network to learn a 
mapping from symmetric 
mixed-strategy profiles and 
environment parameters to 
deviation payoffs

Empirical Game Theory

Proposed Analysis
Functions of Equilibrium:
• Regret robustness metrics
• Social welfare, price of anarchy analysis
• Domain-specific equilibrium statistic

Parameter Sensitivity Analysis:
• Feature analysis
• Game instance clustering
• Equilibrium basins of attraction

Scalability Experiment
Given the same amount of total training data, the deviation 
payoff errors are roughly the same for the three models with 
different player-count range widths. This suggests our model is 
still the better approach, even as the width of the player-count 
range increases.
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Example: Regret Robustness Metrics

Example: Rock-Paper-Scissors
Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

Strategies

Agents Simulator

4, 7
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1, 0 6, 3
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