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* Normal-form game: a mathematical model of incentives
which includes
* Afixed set of players
* The possible actions (strategies) they can play

Variable-Parameter Learning (VPL) outperforms
Fixed-Parameter Learning (FPL) [3] on random additive and
multiplicative sine games with go to 100 players, given the
same training data per instance.

1. How can we use machine learning to construct a
game-theoretic model that generalizes over variable
environment parameters?
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* We use a multi-headed

neural network to learn a S
mapping from symmetric
mixed-strategy profiles and
environment parameters to
deviation payoffs
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Given the same amount of total training data, the deviation
payoff errors are roughly the same for the three models with
different player-count range widths. This suggests our model is
still the better approach, even as the width of the player-count
range increases.
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Our techniques are particularly relevant for analyzing
simulation-based games, where the payoff matrix is not

. . . @ "
multi-agent simulations. 00281\ e 25
. . —— i . - W e 50
Strategies Functions of Equilibrium: Parameter Sensitivity Analysis: O R
— P
S EEIEE * Regretrobustness metrics * Feature analysis W oz \:\
* Social welfare, price of anarchy analysis ¢ Game instance clustering § s
. . a1- . - 1= . . . 9
* Domain-specific equilibrium statistic * Equilibrium basins of attraction & \
o o =Z|vs[E2 4,7) [ o _ C 0.024 R
A i —_— L= ‘ Example: Regret Robustness Metrics 2 g e
Profiles Payoff Data [5Z||9, 5 ; ey . © 5 e, IR
O O Average Regret Metric e-Equilibrium Frequency Metric = R e N A
SN ==||1,0}6,3 Avg Regret Num Instances 8 0.022 s 58 \._\‘:.-____(/ B
Agents Simulator Payoff Matrix - 0.25 5 51.0 \‘\Y,,/ TS ten . "
S 5P -
Applications of simulation-based games: - os R
* Latency arbitrage by high-frequency traders [4] 0.020 , , , | , , , ,
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* Debt consolidation among financial institutions [2] Total Training Data
« Credit network liquidity [1] = =
parameters such as the number of background traders [4], 0.4] 0.4
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analysis for each parameter setting, so in practice the
environment parameter space is usually underexplored.

0.2;

0.0

sl

| | [0.5, 0.5, 0] | |
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.0

sl

0.0 0.2

0.4 0.6 0.8 1.0 1.0

Networks. ACMTrans. Internet Techn. 15, 1 (2015), 3:1-3:41.

[2] Katherine Mayo and Michael P. Wellman. 2021. A Strategic Analysis of Portfolio Compression. In Proceedings of
the 2" ACM International Conference on Al in Finance. Association for Computing Machinery, New York, NY, USA,
8 pages.

[3] Sam Sokota, Caleb Ho, and Bryce Wiedenbeck. 2019. Learning Deviation Payoffs in Simulation-Based Games. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 2173-2180.

[4] Elaine Wah and Michael P. Wellman. 2016. Latency arbitrage in fragmented financial markets: A strategic
agent-based analysis. Algorithmic Finance 5, 3-4, 69-93.



