Background

- **Normal-form game:** a mathematical model of incentives which includes
 - A fixed set of players
 - The possible actions (strategies) they can play
 - Each player's payoff function
- **Deviation payoff:** the expected payoff a player would receive by deviating or changing strategies, given the mixed strategies everyone else is playing
- **Regret:** the maximum payoff amount any player can gain by deviating to any other strategy
- Nash equilibrium: a set of strategies such that no player has an incentive to deviate

Example: Rock-Paper-Scissors Player 2

		R	Ρ	S
Player 1	R	0, 0	-1, 1	1, -1
	Ρ	1, -1	0, 0	-1, 1
	S	-1, 1	1, -1	0, 0

Empirical Game Theory

Our techniques are particularly relevant for analyzing **simulation-based games**, where the payoff matrix is not known in advance but can be filled through a series of multi-agent simulations.

Applications of simulation-based games:

- Latency arbitrage by high-frequency traders [4]
- Debt consolidation among financial institutions [2]
- Credit network liquidity [1]

Typically, the underlying agent-based model has many free **parameters** such as the number of background traders [4], recovery rate [2], and the probability of defaults [1]. Each parameter setting results in a distinct normal-form game. Existing techniques require separate model construction and analysis for each parameter setting, so in practice the environment parameter space is usually underexplored.

Learning Parameterized Families of Games

Madelyn Gatchel^{1,2} & Bryce Wiedenbeck¹ ¹Davidson College, ²University of Michigan

Research Questions

- 1. How can we use machine learning to construct a game-theoretic model that generalizes over variable environment parameters?
- 2. What types of game-theoretic analysis of the parameter space does the learned model enable?

Game family: a set of game **VPL Neural Network Architecture** instances that are related by one or more ordinal Strategy environment parameter(s) Head R 0.5 Hypothesis: game instances from the same game family likely have related payoff and Ρ 0.5 Dense ayer(s) deviation payoff functions • We use a **multi-headed** Del neural network to learn a S mapping from symmetric Dense ayer(s) mixed-strategy profiles and **B** Num ____ environment parameters to 2 Input Layer Players Skip Connection deviation payoffs

Proposed Analysis

Functions of Equilibrium:

- Regret robustness metrics
- Social welfare, price of anarchy analysis Domain-specific equilibrium statistic

Parameter Sensitivity Analysis:

- Feature analysis
- Game instance clustering
- Equilibrium basins of attraction

Methodology

(shown with Rock-Paper-Scissors as example)

Variable-Parameter Learning (VPL) outperforms same training data per instance.

Scalability Experiment

range increases.

- [1] Pranav Dandekar, Ashish Goel, Michael P. Wellman, and Bryce Wiedenbeck. 2015. Strategic Formation of Credit Networks. ACM Trans. Internet Techn. 15, 1 (2015), 3:1-3:41.
- [2] Katherine Mayo and Michael P. Wellman. 2021. A Strategic Analysis of Portfolio Compression. In Proceedings of the 2nd ACM International Conference on AI in Finance. Association for Computing Machinery, New York, NY, USA, 8 pages
- [3] Sam Sokota, Caleb Ho, and Bryce Wiedenbeck. 2019. Learning Deviation Payoffs in Simulation-Based Games. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 2173-2180.
- [4] Elaine Wah and Michael P. Wellman. 2016. Latency arbitrage in fragmented financial markets: A strategic agent-based analysis. *Algorithmic Finance* 5, 3-4, 69-93.

