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Introduction

• Game theory: branch of economics that aims to model how people or 
“agents” interact and make decisions 

• Machine learning: branch of computer science which uses 
mathematical techniques to learn functions from data

• Thesis: Use machine learning to analyze large, symmetric, variable-
player simulation-based games 
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Normal-Form Games

• Type of simultaneous-move game
• Fixed set of players
• For each player
• Set of strategies 
• Utility function

• Represented using payoff matrix

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

Rock-Paper-Scissors
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Simulation-Based Games
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Motivation

• Applications of SBGs
• Stock market
• Cybersecurity
• Credit networks
• Trading agent 

competitions

• Likely that the number 
of players is large and 
unknown

Thesis

Sokota et al. [11]
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Thesis Essential Questions 

•How do we construct a variable-player game-theoretic 
model?

•How do we analyze a variable-player game-theoretic 
model?  

7



Outline

• Introduction and Motivation
• Background

• Deep learning
• Game theory

• Related Work
• Variable-Player Games
• Model: Approximating robust symmetric Nash equilibria  
• Analysis: Equilibrium robustness metrics
• Experiments
• Conclusion & Ongoing Work

8



Background: Deep Learning
Artificial Neuron Neural Network

𝑎 = 𝑓(𝑤!𝑥! + 𝑤"𝑥" +⋯+𝑤#𝑥#)
Input 
Layer

HL #1

HL #2

Output 
Layer
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Background: Deep Learning (cont.)

• Training phase: Optimize neural network parameters
• Objective: minimize error

• Validation phase: Optimize neural network hyperparameters
• Objective: model generalizes well to new data

• Testing phase: Make predictions on new, unlabeled data
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Background: Game Theory

• A normal-form game is a tuple 
𝜏! = (𝑃, 𝑆, 𝑢) where
• 𝑃 = {1,… , 𝑛}
• 𝑆 = 𝑆"×⋯× 𝑆!
• 𝑢 ∶ 𝑆 ↦ ℝ!

Rock-Paper-Scissors
• 𝑃 = {1, 2}
• 𝑆" = 𝐑, 𝐏, 𝐒 ; 𝑆# = 𝐑, 𝐏, 𝐒
• 𝑆 = 𝑆"× 𝑆#
• 𝑆 = { 𝐑, 𝐑 , 𝐑, 𝐏 , 𝐑, 𝐒 ,

𝐏, 𝐑 , 𝐏, 𝐏 , 𝐏, 𝐒 ,
𝐒, 𝐑 , 𝐒, 𝐏 , (𝐒, 𝐒)}

• 𝑢 is represented by payoff 
matrix
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Types of Strategies

• Pure strategy: any 𝑠 ∈ 𝑆$
• Pure-strategy profile:               
𝑠 = (𝑠", … , 𝑠!)
• Mixed strategy: probability 

distribution over actions, 
denoted by 𝜎
• Mixed-strategy profile:             
𝜎⃗ = (𝜎", … , 𝜎!)

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

Rock-Paper-Scissors

𝑠 = (𝐑, 𝐏)

1/3 1/3 1/3

1/3

1/3

1/3

𝜎⃗! = (
1
3
,
1
3
,
1
3
,
1
3
,
1
3
,
1
3
)
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Set of all RPS mixed strategies described by 2-simplex

3D 2D Projection

𝑠!
𝑠"

𝑠$
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Expected Utility

•Expected utility: 
𝑢! 𝜎⃗ = %

"∈$

𝑢! 𝑠 '
%&'

(

𝜎⃗%(𝑠%)

𝑢' 𝜎⃗) =
1
4

1
4
⋅ 0 +

1
4

1
2
⋅ −1 +

1
4

1
4
⋅ 1
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1
2

1
4
⋅ 1 +

1
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1
2
⋅ 0 +

1
2

1
4
⋅ −1

+
1
4

1
4
⋅ −1 +

1
4

1
2
⋅ 1 +

1
4

1
4
⋅ 0

= 0

Rock-Paper-Scissors

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

1/4

1/2

1/4

1/4 1/2 1/4

𝜎⃗" = (
1
4
,
1
2
,
1
4
,
1
4
,
1
2
,
1
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Deviation Payoffs

• Define 𝜎⃗!" = (𝜎#, … , 𝜎"!#, 𝜎"$#, … , 𝜎%)
• Deviation payoff:

devPay" 𝑠, 𝜎⃗ = 𝑢"(𝑠, 𝜎⃗!")

• Deviation payoff function, devPay 𝜎⃗ :
(devPay# 𝑠#, 𝜎⃗ , … , devPay% 𝑠 &% , 𝜎⃗ )

devPay' 𝐑, 𝜎⃗) =
1
4
⋅ 0 +

1
2
⋅ −1 +

1
4
⋅ 1

= −𝟎. 𝟐𝟓

devPay' 𝐏, 𝜎⃗) = 0
devPay' 𝐒, 𝜎⃗) = 𝟎. 𝟐𝟓

Rock-Paper-Scissors

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0
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Nash Equilibrium

• Nash equilibrium: a set of 
strategies such that no player 
can gain by deviating
• Nash’s Theorem: Every finite 

game with two or more 
players contains at least one 
Nash equilibrium. 

• In RPS, 𝜎⃗? = ( ?
@
, ?
@
, ?
@
, ?
@
, ?
@
, ?
@
)

is a Nash equilibrium

Rock-Paper-Scissors

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

1/3

1/3

1/3

1/3 1/3 1/3

𝜎⃗! = (
1
3
,
1
3
,
1
3
,
1
3
,
1
3
,
1
3
)
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Regret

•Player regret: 
𝜀! 𝜎⃗ = max"∈$ 𝑢! 𝑠, 𝜎⃗%! − 𝑢!(𝜎⃗)

•Regret:
𝜀 𝜎⃗ = max$∈6 𝜀$(𝜎⃗)

• 𝜀 𝜎⃗! = 0, 𝜀 𝜎⃗" = 0.25
• 𝛆-Nash equilibrium: 𝜎⃗ such 

that 𝜀 𝜎⃗ ≤ 𝜀 for some 𝜀

Rock-Paper-Scissors

max deviation payoff exp util

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

𝜎⃗! = (
1
3 ,
1
3 ,
1
3 ,

1
3 ,
1
3 ,
1
3 )
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Symmetric Games and 
Equilibria
• A symmetric game is a tuple 𝜏̃A =
(𝑛, 𝑆, 𝑢) where
• 𝑛 is the number of players
• 𝑆 = {𝑠2, … , 𝑠3}
• 𝐶 = {𝑐 ∈ ℤ3: 𝑐4 ≥ 0,∑4523 𝑐4 = 𝑛}
• 𝑢 ∶ 𝐶 ↦ ℝ3

• Symmetric Nash equilibrium: Nash 
equilibrium in which all players are 
playing the same (pure- or mixed-) 
strategy

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

Rock-Paper-Scissors

2

1
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Motivation: Computing Approximate NE

• Computational complexity of computing exact NE
• Representational challenges
• Approximate Nash-finding algorithms
• Lemke-Howson 
• Govindan-Wilson (global Newton method)
• Fictitious play
• Replicator dynamics
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Replicator Dynamics

Learned 
Deviation Payoff 

Function
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Related Work

• Learning game models from data ([1], [7], [10], [14], [18])
• Learning Deviation Payoffs in Simulation-Based Games [11]*

• Games with a variable number of players
• Simulation-based game theory ([2], [9], [15], [16], [17], [19])
• Other examples ([3], [4], [6], [8], [12], [13])
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Variable-Player Symmetric Games

• A variable-player symmetric game is a tuple 𝜏̃BA = (𝑃, 𝑆, 𝑢) where
• 𝑃 = 𝑚,… , 𝑛
• 𝑆 = {𝑠2, … , 𝑠3}
• 𝐶67 = {𝑐 ∈ ℤ3: 𝑐4 ≥ 0,𝑚 ≤ ∑4523 𝑐4 ≤ 𝑛}
• 𝑢 ∶ 𝐶67 ↦ ℝ3
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Variable-Player Symmetric Games (cont.)

• An instance of a variable-player symmetric game is a tuple             
𝜏̃C = (𝑝, 𝑆, 𝑢) where
• 𝑝 is the number of players, with 𝑚 ≤ 𝑝 ≤ 𝑛
• 𝑆 = {𝑠2, … , 𝑠3}
• 𝐶8 = {𝑐 ∈ ℤ3: 𝑐4 ≥ 0, ∑4523 𝑐4 = 𝑝}
• 𝑢 ∶ 𝐶8 ↦ ℝ3
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Model: Approximating deviation payoffs

•Hypothesis: the payoffs in a game 
with 𝑥 players are similar or related 
to the payoffs in the same game 
with 𝑥 ± 1 players, given a large 
value of 𝑥
•We use a multi-headed neural 

network to learn a mapping from 
mixed-strategy profiles and number 
of players to deviation payoffs
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(8, 7, 20, 9, 5)

Model: Approximating deviation payoffs (cont.)

Generating training data:
•Generate random mixed-strategy 

profile 
• Dirichlet distribution

•Generate random player count
• Representative instances
• Uniform random across entire range

• Sample a pure-strategy profile 
according to mixed-strategy profile for 
each opponent
•Query simulator for PS payoffs

(.20, .10, .49, .08, .13)

Noisy pure-strategy payoff values

Query the simulator

50

PC
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Model: Approximating symmetric NE

• Want to focus learning on areas of simplex where we think there 
might be approximate Nash equilibria

Algorithm overview:
• For i iterations
• Run Nash-finding algorithm 
• Sample in neighborhood of candidate Nash and corresponding player counts
• Retrain network, adding resamples to training data

29
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Analysis: Equilibrium robustness metrics

• Typical game-theoretic analysis: find approximate NE in games with 
fixed number of players
• Finding approximate NE in game with variable number of players is 

not as straightforward
• Robustness: measure of how well an equilibrium generalizes across all 

instances of game
• Several proposed robustness metrics
• Average regret
• Median regret
• Max regret
• Approximate equilibrium frequency
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Analysis: 
Comparison of 
robustness 
metrics
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Experiments

• Does our technique outperform Sokota et al.’s technique on variable-
player games? 

• Is the iterative refinement necessary for the variable-player learning 
model? 
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Experiments: Random game generation

• Random additive polynomial sine BAGG-FNAs serve as a proxy for 
simulator data
• Payoff functions are complex but learnable
• Compact representation -> simplifies ground truth deviation payoff 

calculation 
• Can be easily defined with a variable number of players
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Experiment 1: Experimental specification

Learning Models
• Fixed-Player Learning (FPL)
• Train 6 NNs with player counts:  

50, 60, 70, 80, 90, 100

• Variable-Player Learning (VPL)
• Train 1 NN which learns across 

range of player counts

• Hyperparameters optimized 
separately

• 250 random symmetric games
• Range: 50 to 100 players
• 5 strategies

Evaluation
• Average deviation payoff MAE across 

all strategies  

Random Games
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Experiment 1: Comparison to Existing work
PC: Representative instances
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Experiment 1: Comparison to Existing work
PC: Uniform across entire range



Experiment 2: Experimental specification

Learning Models
• Model 1

• No resampling
• Model 2 (baseline)

• Resampling and intermediate regret 
check

• Model 3 
• Resampling and no intermediate 

regret check
• Model 4

• Resampling and intermediate regret 
check 

• 500 random symmetric games
• Range: 50 to 100 players
• 5 strategies

Evaluation
• Regret MAE

Random Games
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Experiment 2: Approximating Symmetric NE 
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Experiment 2: Approximating Symmetric NE
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Conclusion

• Motivation: many real-world interactions of interest have a large, 
uncertain number of players
• Current game-theoretic analysis: limited to fixed-player games
• Related work: number of players is hyperparameter and/or small 

range analyzed
• Main contribution: new type of analysis which accommodates 

uncertainty in the number of players
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Ongoing Work

• Scalability experiments
• Size of range
• Magnitude of player counts
• Number of strategies

• Evaluate performance on a wider range of games
• Extend this technique to analyze variable-player role-symmetric 

games
• Extend this technique to vary parameters of simulation environment
• Theoretical guarantees? 
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Thank you!
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Hierarchy of Game Classes
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Machine Learning Venn Diagram
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Common Activation Functions
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Common Hyperparameters

• Number of hidden layers
• Number of nodes per layer
• Type(s) of layers
• Choice of activation function
• Optimizer
• Learning rate

• Batch size
• Number of epochs
• Weight initialization
• Learning rate decay
• Batch normalization
• Regularization
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Variable-Player Learning (VPL) Architecture
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Model: Approximating robust symmetric NE
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Analysis: 
Comparison 
of 
robustness 
metrics
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Experiments: Random game generation

• Action-graph games ([5])
• Actions are represented as vertices
• Edges encode dependence among actions
• Players have access to a subset of the actions

• AGGs can be directed or undirected
• To compute payoffs—only necessary to look at configuration of 

neighborhood
• Most useful when game exhibits player symmetries
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AGG 
Example
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AGG 
Example
(cont.)
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Experiments: Random game generation

• BAGG-FNAs
• Nodes of graph can be partitioned into two independent sets (action nodes 

and function nodes)
• Function nodes

• Input: total number of players playing actions in neighborhood of given function node
• Output: payoff contributed by given function node, according to function table

• Payoff for playing action a: weighted sum of function outputs from 
neighboring function nodes
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RPS as BAGG-FNA

R P S

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0
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Experiments: Random game generation ([11])

• Random additive polynomial sine BAGG-FNAs
• Subgraph containing edges from action nodes to function nodes: Erdös-Rényi

random graph
• Subgraph containing edges from function nodes to action nodes: complete 

bipartite graph 
• Action weights generated according to normal distribution
• Function nodes: sum of long-period sine function and low-degree polynomial

• Add noise to BAGG-FNA training data payoffs
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Additional Hyperparameters

• Number of initial queries
• Number of initial training epochs
• Number of replicator dynamics 

mixtures
• Max regret (if intermediate 

regret check)
• 𝜔BD, the mixture resample 

factor

• Number of resample queries
• Number of retrain epochs
• Number of replicator dynamics 

iterations
• Number of resample/retrain 

iterations
• 𝜔C, the player count resample 

factor
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