
Variable-Player Learning for
Simulation-Based Games

Madelyn Gatchel
Advisor: Bryce Wiedenbeck

1

Outline

• Introduction and Motivation
• Background
• Related Work
• Variable-Player Games
• Model: Approximating robust symmetric Nash equilibria
• Analysis: Equilibrium robustness metrics
• Experiments
• Conclusion & Ongoing Work

2

Introduction

• Game theory: branch of economics that aims to model how people or
“agents” interact and make decisions

• Machine learning: branch of computer science which uses
mathematical techniques to learn functions from data

• Thesis: Use machine learning to analyze large, symmetric, variable-
player simulation-based games

3

Normal-Form Games

• Type of simultaneous-move game
• Fixed set of players
• For each player
• Set of strategies
• Utility function

• Represented using payoff matrix

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

Rock-Paper-Scissors

4

Simulation-Based Games

5

Motivation

• Applications of SBGs
• Stock market
• Cybersecurity
• Credit networks
• Trading agent

competitions

• Likely that the number
of players is large and
unknown

Thesis

Sokota et al. [11]

6

https://www.losaltosonline.com/news/sections/business/185-business-columns/62148-how-the-stock-market-has-reacted-to-pandemics

Thesis Essential Questions

•How do we construct a variable-player game-theoretic
model?

•How do we analyze a variable-player game-theoretic
model?

7

Outline

• Introduction and Motivation
• Background

• Deep learning
• Game theory

• Related Work
• Variable-Player Games
• Model: Approximating robust symmetric Nash equilibria
• Analysis: Equilibrium robustness metrics
• Experiments
• Conclusion & Ongoing Work

8

Background: Deep Learning
Artificial Neuron Neural Network

𝑎 = 𝑓(𝑤!𝑥! + 𝑤"𝑥" +⋯+𝑤#𝑥#)
Input
Layer

HL #1

HL #2

Output
Layer

9

Background: Deep Learning (cont.)

• Training phase: Optimize neural network parameters
• Objective: minimize error

• Validation phase: Optimize neural network hyperparameters
• Objective: model generalizes well to new data

• Testing phase: Make predictions on new, unlabeled data

10

Background: Game Theory

• A normal-form game is a tuple
𝜏! = (𝑃, 𝑆, 𝑢) where
• 𝑃 = {1,… , 𝑛}
• 𝑆 = 𝑆"×⋯× 𝑆!
• 𝑢 ∶ 𝑆 ↦ ℝ!

Rock-Paper-Scissors
• 𝑃 = {1, 2}
• 𝑆" = 𝐑, 𝐏, 𝐒 ; 𝑆# = 𝐑, 𝐏, 𝐒
• 𝑆 = 𝑆"× 𝑆#
• 𝑆 = { 𝐑, 𝐑 , 𝐑, 𝐏 , 𝐑, 𝐒 ,

𝐏, 𝐑 , 𝐏, 𝐏 , 𝐏, 𝐒 ,
𝐒, 𝐑 , 𝐒, 𝐏 , (𝐒, 𝐒)}

• 𝑢 is represented by payoff
matrix

11

Types of Strategies

• Pure strategy: any 𝑠 ∈ 𝑆$
• Pure-strategy profile:
𝑠 = (𝑠", … , 𝑠!)
• Mixed strategy: probability

distribution over actions,
denoted by 𝜎
• Mixed-strategy profile:
𝜎⃗ = (𝜎", … , 𝜎!)

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

Rock-Paper-Scissors

𝑠 = (𝐑, 𝐏)

1/3 1/3 1/3

1/3

1/3

1/3

𝜎⃗! = (
1
3
,
1
3
,
1
3
,
1
3
,
1
3
,
1
3
)

12

Set of all RPS mixed strategies described by 2-simplex

3D 2D Projection

𝑠!
𝑠"

𝑠$

13

Expected Utility

•Expected utility:
𝑢! 𝜎⃗ = %

"∈$

𝑢! 𝑠 '
%&'

(

𝜎⃗%(𝑠%)

𝑢' 𝜎⃗) =
1
4

1
4
⋅ 0 +

1
4

1
2
⋅ −1 +

1
4

1
4
⋅ 1

+
1
2

1
4
⋅ 1 +

1
2

1
2
⋅ 0 +

1
2

1
4
⋅ −1

+
1
4

1
4
⋅ −1 +

1
4

1
2
⋅ 1 +

1
4

1
4
⋅ 0

= 0

Rock-Paper-Scissors

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

1/4

1/2

1/4

1/4 1/2 1/4

𝜎⃗" = (
1
4
,
1
2
,
1
4
,
1
4
,
1
2
,
1
4
)

14

Deviation Payoffs

• Define 𝜎⃗!" = (𝜎#, … , 𝜎"!#, 𝜎"$#, … , 𝜎%)
• Deviation payoff:

devPay" 𝑠, 𝜎⃗ = 𝑢"(𝑠, 𝜎⃗!")

• Deviation payoff function, devPay 𝜎⃗ :
(devPay# 𝑠#, 𝜎⃗ , … , devPay% 𝑠 &% , 𝜎⃗)

devPay' 𝐑, 𝜎⃗) =
1
4
⋅ 0 +

1
2
⋅ −1 +

1
4
⋅ 1

= −𝟎. 𝟐𝟓

devPay' 𝐏, 𝜎⃗) = 0
devPay' 𝐒, 𝜎⃗) = 𝟎. 𝟐𝟓

Rock-Paper-Scissors

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

15

1/4

1/2

1/4

1/4 1/2 1/4

𝜎⃗" = (
1
4
,
1
2
,
1
4
,
1
4
,
1
2
,
1
4
)

Nash Equilibrium

• Nash equilibrium: a set of
strategies such that no player
can gain by deviating
• Nash’s Theorem: Every finite

game with two or more
players contains at least one
Nash equilibrium.

• In RPS, 𝜎⃗? = (?
@
, ?
@
, ?
@
, ?
@
, ?
@
, ?
@
)

is a Nash equilibrium

Rock-Paper-Scissors

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

1/3

1/3

1/3

1/3 1/3 1/3

𝜎⃗! = (
1
3
,
1
3
,
1
3
,
1
3
,
1
3
,
1
3
)

16

Regret

•Player regret:
𝜀! 𝜎⃗ = max"∈$ 𝑢! 𝑠, 𝜎⃗%! − 𝑢!(𝜎⃗)

•Regret:
𝜀 𝜎⃗ = max$∈6 𝜀$(𝜎⃗)

• 𝜀 𝜎⃗! = 0, 𝜀 𝜎⃗" = 0.25
• 𝛆-Nash equilibrium: 𝜎⃗ such

that 𝜀 𝜎⃗ ≤ 𝜀 for some 𝜀

Rock-Paper-Scissors

max deviation payoff exp util

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

𝜎⃗! = (
1
3 ,
1
3 ,
1
3 ,

1
3 ,
1
3 ,
1
3)

17
𝜎⃗" = (

1
4 ,
1
2 ,
1
4 ,

1
4 ,
1
2 ,
1
4)

Symmetric Games and
Equilibria
• A symmetric game is a tuple 𝜏̃A =
(𝑛, 𝑆, 𝑢) where
• 𝑛 is the number of players
• 𝑆 = {𝑠2, … , 𝑠3}
• 𝐶 = {𝑐 ∈ ℤ3: 𝑐4 ≥ 0,∑4523 𝑐4 = 𝑛}
• 𝑢 ∶ 𝐶 ↦ ℝ3

• Symmetric Nash equilibrium: Nash
equilibrium in which all players are
playing the same (pure- or mixed-)
strategy

Player 2

R P S

Pl
ay

er
 1

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

Rock-Paper-Scissors

2

1

18

Motivation: Computing Approximate NE

• Computational complexity of computing exact NE
• Representational challenges
• Approximate Nash-finding algorithms
• Lemke-Howson
• Govindan-Wilson (global Newton method)
• Fictitious play
• Replicator dynamics

19

Replicator Dynamics

Learned
Deviation Payoff

Function

20

Outline

• Introduction and Motivation
• Background
• Related Work
• Variable-Player Games
• Model: Approximating robust symmetric Nash equilibria
• Analysis: Equilibrium robustness metrics
• Experiments
• Conclusion & Ongoing Work

21

Related Work

• Learning game models from data ([1], [7], [10], [14], [18])
• Learning Deviation Payoffs in Simulation-Based Games [11]*

• Games with a variable number of players
• Simulation-based game theory ([2], [9], [15], [16], [17], [19])
• Other examples ([3], [4], [6], [8], [12], [13])

22

Outline

• Introduction and Motivation
• Background
• Related Work
• Variable-Player Games
• Model: Approximating robust symmetric Nash equilibria
• Analysis: Equilibrium robustness metrics
• Experiments
• Conclusion & Ongoing Work

23

Variable-Player Symmetric Games

• A variable-player symmetric game is a tuple 𝜏̃BA = (𝑃, 𝑆, 𝑢) where
• 𝑃 = 𝑚,… , 𝑛
• 𝑆 = {𝑠2, … , 𝑠3}
• 𝐶67 = {𝑐 ∈ ℤ3: 𝑐4 ≥ 0,𝑚 ≤ ∑4523 𝑐4 ≤ 𝑛}
• 𝑢 ∶ 𝐶67 ↦ ℝ3

24

Variable-Player Symmetric Games (cont.)

• An instance of a variable-player symmetric game is a tuple
𝜏̃C = (𝑝, 𝑆, 𝑢) where
• 𝑝 is the number of players, with 𝑚 ≤ 𝑝 ≤ 𝑛
• 𝑆 = {𝑠2, … , 𝑠3}
• 𝐶8 = {𝑐 ∈ ℤ3: 𝑐4 ≥ 0, ∑4523 𝑐4 = 𝑝}
• 𝑢 ∶ 𝐶8 ↦ ℝ3

25

Outline

• Introduction and Motivation
• Game Theory Background
• Related Work
• Variable-Player Games
• Model

• Approximating deviation payoffs
• Approximating symmetric Nash equilibria

• Analysis: Equilibrium robustness metrics
• Experiments
• Conclusion & Ongoing Work

26

Model: Approximating deviation payoffs

•Hypothesis: the payoffs in a game
with 𝑥 players are similar or related
to the payoffs in the same game
with 𝑥 ± 1 players, given a large
value of 𝑥
•We use a multi-headed neural

network to learn a mapping from
mixed-strategy profiles and number
of players to deviation payoffs

0.5

0.5

0

2

-0.5

0.5

0

R

P

S

R

P

S

De
ns

e
la

ye
rs

De
ns

e
la

ye
r(

s)
De

ns
e

la
ye

r(
s)

De
ns

e
la

ye
r(

s)

Li
ne

ar
Li

ne
ar

Li
ne

ar

Ply
Count

Neural Network Architecture for Variable-
Player Learning

M
ix

ed
 S

tr
at

eg
y

Pr
ob

ab
ili

tie
s

D
eviation Payoffs

27

(8, 7, 20, 9, 5)

Model: Approximating deviation payoffs (cont.)

Generating training data:
•Generate random mixed-strategy

profile
• Dirichlet distribution

•Generate random player count
• Representative instances
• Uniform random across entire range

• Sample a pure-strategy profile
according to mixed-strategy profile for
each opponent
•Query simulator for PS payoffs

(.20, .10, .49, .08, .13)

Noisy pure-strategy payoff values

Query the simulator

50

PC

28

Model: Approximating symmetric NE

• Want to focus learning on areas of simplex where we think there
might be approximate Nash equilibria

Algorithm overview:
• For i iterations
• Run Nash-finding algorithm
• Sample in neighborhood of candidate Nash and corresponding player counts
• Retrain network, adding resamples to training data

29

Neighborhood
Sampling

30

100

90

80

70

60

50
PC

Outline

• Introduction and Motivation
• Game Theory Background
• Related Work
• Variable-Player Games
• Model: Approximating robust symmetric Nash equilibria
• Analysis

• Equilibrium robustness metrics
• Comparison of robustness metrics

• Experiments
• Conclusion & Ongoing Work

31

Analysis: Equilibrium robustness metrics

• Typical game-theoretic analysis: find approximate NE in games with
fixed number of players
• Finding approximate NE in game with variable number of players is

not as straightforward
• Robustness: measure of how well an equilibrium generalizes across all

instances of game
• Several proposed robustness metrics
• Average regret
• Median regret
• Max regret
• Approximate equilibrium frequency

32

Analysis:
Comparison of
robustness
metrics

33

Outline

• Introduction and Motivation
• Game Theory Background
• Related Work
• Variable-Player Games
• Model: Approximating robust symmetric Nash equilibria
• Analysis: Equilibrium robustness metrics
• Experiments

• Random game generation
• Comparison to existing work
• Approximating symmetric Nash equilibria

• Conclusion & Ongoing Work

34

Experiments

• Does our technique outperform Sokota et al.’s technique on variable-
player games?

• Is the iterative refinement necessary for the variable-player learning
model?

35

Experiments: Random game generation

• Random additive polynomial sine BAGG-FNAs serve as a proxy for
simulator data
• Payoff functions are complex but learnable
• Compact representation -> simplifies ground truth deviation payoff

calculation
• Can be easily defined with a variable number of players

36

Experiment 1: Experimental specification

Learning Models
• Fixed-Player Learning (FPL)
• Train 6 NNs with player counts:

50, 60, 70, 80, 90, 100

• Variable-Player Learning (VPL)
• Train 1 NN which learns across

range of player counts

• Hyperparameters optimized
separately

• 250 random symmetric games
• Range: 50 to 100 players
• 5 strategies

Evaluation
• Average deviation payoff MAE across

all strategies

Random Games

37

Experiment 1: Comparison to Existing work
PC: Representative instances

38

39

Experiment 1: Comparison to Existing work
PC: Uniform across entire range

Experiment 2: Experimental specification

Learning Models
• Model 1

• No resampling
• Model 2 (baseline)

• Resampling and intermediate regret
check

• Model 3
• Resampling and no intermediate

regret check
• Model 4

• Resampling and intermediate regret
check

• 500 random symmetric games
• Range: 50 to 100 players
• 5 strategies

Evaluation
• Regret MAE

Random Games

40

Experiment 2: Approximating Symmetric NE

41

Experiment 2: Approximating Symmetric NE

42

Outline

• Introduction and Motivation
• Background
• Related Work
• Variable-Player Games
• Model: Approximating robust symmetric Nash equilibria
• Analysis: Equilibrium robustness metrics
• Experiments
• Conclusion & Ongoing Work

43

Conclusion

• Motivation: many real-world interactions of interest have a large,
uncertain number of players
• Current game-theoretic analysis: limited to fixed-player games
• Related work: number of players is hyperparameter and/or small

range analyzed
• Main contribution: new type of analysis which accommodates

uncertainty in the number of players

44

Ongoing Work

• Scalability experiments
• Size of range
• Magnitude of player counts
• Number of strategies

• Evaluate performance on a wider range of games
• Extend this technique to analyze variable-player role-symmetric

games
• Extend this technique to vary parameters of simulation environment
• Theoretical guarantees?

45

References
[1] E. Areyan Viqueira, C. Cousins, and A. Greenwald, “Improved algorithms for learning equilibria in simulation-based games,” in Proceedings of the 19th

International Conference on Autonomous Agents and MultiAgent Systems. AAMAS ‘20. p. 79-87.

[2] E. Brinkman and M. P. Wellman, “Empirical mechanism design for optimizing clearing interval in frequent call markets,” in Proceedings of the 2017
ACM Conference on Economics and Computation. EC ‘17. p. 205-221.

[3] S. Fatima, “Sequential versus simultaneous auctions: A case study,” in Proceedings of the 8th International Conference on Electronic Commerce: The
New e-Commerce: Innovations for Conquering Current Barriers, Obstacles, and Limitations to Conducting Successful Business on the Internet. ICEC ‘06. p.
82-91.

[4] N. Hanaki and J. Rouchier, “If you are so rich, why aren’t you smart?” in Proceedings of the 2013 Winter Simulation Conference: Simulation: Making
Decisions in a Complex World. WSC ‘13. IEEE Press, 2013, p. 1731-1741.
[5] A. X. Jiang, K. Leyton-Brown, and N. Bhat, “Action-graph games,” Games and Economic Behavior, vol. 71, pp. 141-173, 01 2011.

[6] J. Honorio and L. Ortiz, “Learning the structure and parameters of large-population graphical games from behavioral data,” vol. 16, no. 1, p. 1157-
1210, Jan. 2015.

[7] Z. Li and M.P. Wellman, “Structure learning for approximate solution of many-player games.” in The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020. AAAI Press, 2020. p. 2119-2127.

[8] P. E. Petruzzi, J. Pitt, and D. Busquets, “Electronic social capital for self-organizing multi-agent systems,” vol. 12, no. 3, Sept. 2017.

[9] M. Shearer, G. Rauterberg, and M. P. Wellman, “An agent-based model of financial benchmark manipulation,” ICML-19 Workshop on AI in Finance.

[10] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep
neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016.

46

References
[11] S. Sokota, C. Ho, and B. Wiedenbeck, “Learning deviation payoffs in simulation-based games,” AAAI, vol. 33, no. 1, pp. 2173-2180,
2019.
[12] D. R. Thompson, O. Lev, K. Leyton-Brown, and J. Rosenschein, “Empirical analysis of plurality election equilibria,” in Proceedings
of the 2013 International Conference on Autonomous Agents and Multi-Agent Systems. AAAMAS ‘13. 2013, p. 391-398.
[13] B. Tuffin and P. Maillé, “How many parallel TCP sessions to open: A pricing perspective,” in Performability Has its Price, B. Stiller,
P. Reichl, and B. Tuffin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 2-12.
[14] Y. Vorobeychik, M. Wellman, and S. Singh, “Learning payoff functions in infinite games,” Machine Learning, vol. 67, pp. 145-168,
05 2007.
[15] E. Wah, D. Hurd, and M. P. Wellman, “Strategic market choice: Frequent call markets vs. continuous double auctions for fast and
slow traders,” EAI Endorsed Trans. Serious Games, vol. 3, no. 10, p. e1, 2016.”
[16] E. Wah, M. Wright, and M. P. Wellman, “Welfare effects of market making in continuous double auctions,” J. Artif. Intell. Res., vol.
59, pp. 613-650, 2017.
[17] M. P. Wellman, T. H. Kim, and Q. Duong, “Analyzing incentives for protocol compliance in complex domains: A case study of
introduction-based routing,” CoRR, 2013.
[18] B. Wiedenbeck, F. Yang, and M. P. Wellman, “A regression approach for modeling games with many symmetric players,” in
Proceedings of the Thirty-Seccond AAAI Conference on Artificial Intelligence. AAAI Press, 2018, pp. 1266-1273.
[19] M. Wright and M. P. Wellman, “Evaluating the stability of non-adaptive trading in continuous double auctions,” in Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent Systems. AAMAS ‘18. 2018, p. 614-622.

47

Thank you!

48

Hierarchy of Game Classes

49

Machine Learning Venn Diagram

50

Common Activation Functions

51

Common Hyperparameters

• Number of hidden layers
• Number of nodes per layer
• Type(s) of layers
• Choice of activation function
• Optimizer
• Learning rate

• Batch size
• Number of epochs
• Weight initialization
• Learning rate decay
• Batch normalization
• Regularization

52

Variable-Player Learning (VPL) Architecture

53

Model: Approximating robust symmetric NE

54

Analysis:
Comparison
of
robustness
metrics

Av
er

ag
e

Re
gr

et
Ap

pr
ox

im
at

e
Eq

ui
lib

riu
m

Fr

eq
ue

nc
y

55

Experiments: Random game generation

• Action-graph games ([5])
• Actions are represented as vertices
• Edges encode dependence among actions
• Players have access to a subset of the actions

• AGGs can be directed or undirected
• To compute payoffs—only necessary to look at configuration of

neighborhood
• Most useful when game exhibits player symmetries

56

AGG
Example

57

AGG
Example
(cont.)

58

Experiments: Random game generation

• BAGG-FNAs
• Nodes of graph can be partitioned into two independent sets (action nodes

and function nodes)
• Function nodes

• Input: total number of players playing actions in neighborhood of given function node
• Output: payoff contributed by given function node, according to function table

• Payoff for playing action a: weighted sum of function outputs from
neighboring function nodes

59

RPS as BAGG-FNA

R P S

R 0, 0 -1, 1 1, -1

P 1, -1 0, 0 -1, 1

S -1, 1 1, -1 0, 0

60

Experiments: Random game generation ([11])

• Random additive polynomial sine BAGG-FNAs
• Subgraph containing edges from action nodes to function nodes: Erdös-Rényi

random graph
• Subgraph containing edges from function nodes to action nodes: complete

bipartite graph
• Action weights generated according to normal distribution
• Function nodes: sum of long-period sine function and low-degree polynomial

• Add noise to BAGG-FNA training data payoffs

61

Additional Hyperparameters

• Number of initial queries
• Number of initial training epochs
• Number of replicator dynamics

mixtures
• Max regret (if intermediate

regret check)
• 𝜔BD, the mixture resample

factor

• Number of resample queries
• Number of retrain epochs
• Number of replicator dynamics

iterations
• Number of resample/retrain

iterations
• 𝜔C, the player count resample

factor

62

