Learning Parameterized Families of Games

Madelyn Gatchel and Bryce Wiedenbeck

What is a parameterized family of games?

Where is there a need for parameterized game families?

2

How do we analyze a parameterized game model?

How do we learn a parameterized game model?

3

Motivating Example: Launching New Cereal

- **Parameter V**: Pr(*Recession*)
 - Must be fixed in an NFG

Motivating Example: Launching New Cereal

Separate Game Instances: $\Gamma(0)$; $\Gamma(.25)$; $\Gamma(.5)$; $\Gamma(.75)$; $\Gamma(1)$

- Parameter V: Pr(Recession)
 - Must be fixed in an NFG

Motivating Example: Launching New Cereal

Parameterized Game Family: $\gamma(V) = \{\Gamma(v): 0 \le v \le 1, v \in \mathbb{R}\}$

- Parameter V: Pr(Recession)
 - Must be fixed in an NFG

Hypothesis

Games which are related by a common, ordinal environment parameter likely have related payoff functions.

What is a parameterized family of games?

Where is there a need for parameterized game families?

How do we learn a parameterized game model?

3

How do we analyze a parameterized game model?

Simulation-Based Games

Strategies ĒĒ Ξ V = vĒĒ **Env Param** (4, 7) 4,7 Ο Ο vs 📃 **Payoff Data** 0 0 9, 5 **Profiles** 1,06,3 Simulator **Payoff Matrix** Agents $\Gamma(V=v)$

Example SBGs

Discrete Parameters

- Latency arbitrage in financial markets [21]
 - Number of background traders

Continuous Parameters

- Debt cycle compression among financial institutions [14]
 - Asset recovery rate

- Complex network routing protocols [24]
 - Number of non-attacking nodes
 - (Clients, ISPs, roots, and servers)

- Strategic market selection with fast and slow traders [20]
 - Mean reversion parameter

What is a parameterized family	Where is there a need for parameterized
of games?	ame families?
Game Theo	pry 2
Backgroun	nd
How do we lea	^{2.5} do we analyze a
parameterized	parameterized game
game model?	model?

• In a **symmetric game**, player identities are irrelevant

- Opponent profile: \vec{s}
- $u_j(\vec{s})$ denotes payoff for players playing strategy j

Background

• In a **symmetric game**, player identities are irrelevant

- **Opponent profile:** \vec{s}
- $u_j(\vec{s})$ denotes payoff for players playing strategy j

- Symmetric profile: $\vec{\sigma}$
- Deviation payoff: $u_j(\vec{\sigma}) = \sum_{\vec{s} \in \vec{S}} \Pr(\vec{s} | \vec{\sigma}) u_j(\vec{s})$
- Deviation payoff vector: $u(\vec{\sigma})$

• Expected utility: $\vec{\sigma} \cdot u(\vec{\sigma})$

Background

•Regret:

$$\epsilon(\vec{\sigma}) = \max_{\substack{j \in S}} u_j(\vec{\sigma}) - \vec{\sigma} \cdot u(\vec{\sigma})$$

max deviation expected
payoff utility

• Nash equilibrium:

 $\vec{\sigma}$ such that $\varepsilon(\vec{\sigma}) = 0$

• ε -Nash equilibrium: $\vec{\sigma}$ such that $\epsilon(\vec{\sigma}) \leq \varepsilon$

Background

What is a parameterized family of games?

Where is there a need for parameterized game families?

How do we analyze a parameterized game model?

How do we learn a parameterized game model?

3

Learning Deviation Payoffs in Simulation-Based Games

• Sokota et al. [15] use a **multiheaded neural network** to learn the deviation payoff function

 This learned function may be used in approximate Nashfinding algorithms to find ε-Nash equilibria

Neural network architecture for a 3-strategy symmetric game instance

Learning Deviation Payoffs in Parameterized Game Families

- We adapt [15] to learn a mapping from mixed-strategy profiles *and environment parameters* to deviation payoffs
- This network has a **skip connection** from the input layer to each strategy head

Neural network architecture for a 3-strategy symmetric parameterized game family

Experiment 1a: Comparison to Existing Work

Varied Parameter: Number of Players [90-100]

Experiment 1b: Comparison to Existing Work

Varied Parameter: Erdős–Rényi Probability Threshold [0.15-0.25]

Q3. How do we learn a parameterized game model? — Experiments

What is a parameterized family of games?

How do we learn a parameterized game model?

3

Where is there a need for parameterized game families?

How do we analyze a parameterized game model?

Parameterized Game Family Analysis

Q4. How do we analyze a parameterized game model?

By learning a single model for a parameterized game family, we can:

1. Achieve higher payoff accuracy with less data

2. Conduct new types of robustness and sensitivity analyses

3. Better characterize parameter impact on strategic incentives

References

[14] Katherine Mayo and Michael P. Wellman. 2021. A Strategic Analysis of Portfolio Compression. In ICAIF. Article 20, 8 pages.

- [15] Sam Sokota, Caleb Ho, and Bryce Wiedenbeck. 2019. Learning Deviation Payoffs in Simulation -Based Games. In AAAI, Vol. 33. 2173-2180.
- [20] Elaine Wah, Dylan Hurd, and Michael P. Wellman. 2016. Strategic Market Choice: Frequent Call Markets vs. Continuous Double Auctions for Fast and Slow Traders. *EAI Endorsed Transactions* on Serious Games 3, 10 (2016).
- [21] Elaine Wah and Michael P. Wellman. 2016. Latency Arbitrage in Fragmented Financial Markets: A Strategic Agent-Based Analysis. *Algorithmic Finance* 5, 304, 69-93.
- [24] Michael P. Wellman, Taie Hyung Kim, and Quang Duong. 2013. Analyzing Incentives for Protocol Compliance in Complex Domains: A Case Study of Introduction-Based Routing. In Workshop on the Economics of Information Security.

Thank you!

Madelyn Gatchel

University of Michigan gatchel@umich.edu

Link to Paper:

Learning Parameterized Families of Games

Bryce Wiedenbeck

Davidson College brwiedenbeck@davidson.edu

