Learning Parameterized Families of Games

Madelyn Gatchel* & Bryce Wiedenbeck?
*University of Michigan, 2Davidson College

By learning a single model for a parameterized game family, we can: Link to Paper:
1. Achieve higher payoff accuracy with less data

2.Conduct new types of robustness and sensitivity analysis

3.Better characterize parameter impact on strategic incentives

Motivation & New Terminology Simulation-Based Games
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: . * Nearly all simulation-based games (SBGs) have a relevant environment parameter
. * Ex: number of background traders, asset recovery rate, probability of default
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* Player symmetries are common in SBGs, so this work focuses on finding symmetric
- £-Nash equilibria in symmetric games
Hypothesis: 1 Y >
Games which are related by a common, ordinal * Deviation payoff: the expected payoff a player would receive by deviating or
environment parameter likely have related payoffs. changing strategies, given the mixed strategies everyone else is playing

Learning Parameterized Game Families Analyzing Parameterized Game Families

* We adapt prior work (Sokota et al. p strategy E 0% | | 5 ldentifying Robust Equilibria
AAAI-19) to learn a mapping from . N = 7 I = - Comparison of two regret robustness metrics on a
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Comparison to Existing Work
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Variable-Parameter Learning (VPL): a single learned model for entire game family
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0.01 | | | | | * This game family demonstrates the importance of analyzing the entire parameter
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Training Data Per Instance space as opposed to “representative” parameter values (e.qg., 50, 60,...,1200)
For both discrete and continuous parameters, a single VPL model Our single learned model allows for more tractable analysis

outperforms a collection of FPL models given identical training data. of the full parameter space and enables new types of analysis.



